Quantified Flow–Stream Health Relationships across South Carolina

Acknowledgements

- Clemson:
 - Luke Bower
 - Brandon Peoples
 - Marzieh Motallebi
 - Carl Ureta
- SCDNR:
 - Mark Scott
 - Kevin Kubach
 - Elizabeth Miller
 - Lorianne Riggin
 - Scott Harder

- **SCDHEC**:
 - David Eargle
 - Alex Butler
 - Leigh Monroe
- **RTI**:
 - Michele Eddy
 - Benjamin Lord
- The Nature Conservancy
 - Eric Krueger
- Funding: The Nature Conservancy and Clemson South Carolina Water Resources Center

Key Messages / Proposal

- 1. The question of "how much water does a river need?" can be answered quantitatively and scientifically
- 2. It's not a matter of ability or method, it's one of data (Spoiler: We have the data)
- 3. The focus for today is to share the tool. The details of how it is constructed will require follow-up
- 4. **Proposal**: The Edisto RBC will see enough utility in this work to call for follow-up engagement, and use the results to evaluate the impact of water use scenarios on the river's health

Principles

- The amount and behavior of flow in a river or stream is a strong determinant of the biological life we find within
- If we have enough of the right data for both flow and biology, we can identify those determining relationships
- If we have those relationships, we can predict how changes in flow amount and / or behavior will change the biological health of a river or stream
- Assumption: We expect our rivers and streams to have some component of their natural fish and invertebrate residents to be called "healthy"

Goal of This Work:

- Determine relationships between instream flow metrics and aquatic life. We want to know:
 - What are the key relationships?
 - How strong are those relationships?
 - How do relationships differ among regions across SC?
 - Are there key thresholds?

Build a hydrologic foundation of streamflow data

- RTI International
 - WATERFALL model: Watershed Flow and ALLocation system
- Selected 24 stream metrics to evaluate
 - Minimally redundant
 - Timing, magnitude, frequency, rate of change, and duration

Code	Flow regime	Description		
MA1	Magintude	Mean daily flow (cfs)		
MA3	Magnitude	Mean of the coefficient of variation for each year		
MA41	Magnitude	Annual runoff		A = annual flow
<u>MA42</u>	<u>Magnitude</u>	Variability_of_MA41		
ML17	Magnitude	Base flow index		
ML18	Magnitude	Variability in ML17	M = Magnitude	L = low flow
ML22	Magnitude	Specific mean annual minimum flow		
MH14	Magintude	Median of annual maximum flows (dimensionless)		H – high flow
MH20	Magintude	Specific mean annual maximum flow (cfs/mile)		n – nign jiow
FL1	Frequency	Low flood pulse count		
FL2	Frequency	Variability in FL1	F = Frequency	
FH1	Frequency	High flood pulse count		
FH2	Frequency	Variability in FH1		
DL16	Duration	Low flow pulse duration (Days)		
DL17	Duration	Variability in DL16		
DL18	Duration	Number of zero-flow days	D = Duration	
DH15	Duration	High flow pulse duration (Days)		
DH16	Duration	Variability in DH15		
TA1	Timing	Constancy		
TL1	Timing	Julian date of annual minimum		
TL2	Timing	Variability in TL1	T = Timing	
TH1	Timing	Julian date of annual maximum starting at day 100	8	
TH2	Timing	Variability in TH1		
RA8	Rate	Number of reversals	R = rate	

Biological Data:

- Ecoregion is important!
 - Some metrics differ across ecoregions
 - Assemblage differences
- 492 Fish sites (streams & rivers)
 - SCDNR
 - Up to ~500K watersheds
 - Stream order 7
- 530 macroinvertebrate sites

SCDHEC

Genus level

Magnitude

Frequency

SE Plains

Next Steps

- The completion and publication of these flow-ecology relationships is slated for June 2021
- Team will identify and recommend a set of relationships for use as water management metrics (begin Mar-Apr 2021?)
- Questions?