The Emergence of South Carolina's New Tools for Surface Water Availability Assessment

Nina Caraway

March 14, 2016

CDM Smi

WATER + ENVIRONMENT + TRANSPORTATION + ENERGY + FACILITIES

Myrtle Beach, SC

Presentation Outline

- Project purpose and status
- Surface Water Allocation Model (SWAM) overview
- Project highlights...
 - Comparison of managed and unimpaired flows
 - Aspects of model development, calibration, and verification
- SWAM Demonstration

What is the South Carolina Surface Water Availability Assessment?

Project Purpose: Build surface water quantity models capable of...

- Accounting for inflows and outflows from a basin
- Accurately simulating streamflows and reservoir levels over the historical inflow record
- Conducting "What if" scenarios to evaluate future water demands, management strategies and system performance.

Technical Advisory Committee

- Advisory group consisting of representatives from:
 - Municipalities & industry
 - Non-governmental organizations
 - Energy
 - Agriculture
 - Consultants
- Engage in project meetings and model training
- Provide valuable technical feedback, insight, data analysis, and direction

Clemson's Stakeholder Outreach Site

http://www.scwatermodels.com

organization and requires cooperation and shared responsibility amongst all agencies and water users. Stakeholder involvement and feedback is critical to this process. READ MORE >> Did you know that only two of South Carolina's eight major river basins are not shared with other states? This is also the first time that South Carolina will have surface water models developed individually for each basin that can work together for a state assessment. READ MORE >>

Website

Modeling Report and Other Documents

http://www.dnr.sc.gov/water/waterplan/surfacewater.html

Life's Better Conglettation Server Conglettation Server								
123 C	😂 Outdoors							
DNR South Carolina Department of Natural Resources								
Ruy Boating	Education Fishing Hunting Land Maps Regulation	ons Water Wildlife						
Information	Information Surface Water Modeling and Assessments							
Contact Us	 Effective water planning and management requires an accurate assessment of the location and quantity of the water resources of the State, and one of the most weeful tools for evaluating management strategies in a computer model that 							
News								
Other States	simulates the surface water system throughout an entire watershed. To that end,							
Presentationa	quantity models for each of the <u>cight major watersheds</u> , or basins, in South							
Surface Water Modeling	Carolina.							
Water Assessment (2009 Report)	A more detailed discussion of the proposed surface water modeling can be found in the document Basinwide Surface Water Modeling in South Carolina PDE, and							
Water Plan	an overview of each of the eight basins for which the models will be developed can be found in the document Major Basins of South Carolina 2005							
(2004 Report) White Paners	In July 2014, CDM Smith, Inc. was awarded a contract	to develop the models for						
Water Plan Home	the state.							
Hydrology Section								
	Project Documents							
	For any questions regarding these reports and presentations, please contact Joe Gellici by phone (803-734-6428,a) or <u>email</u> .							
	For information about stakeholder meetings, please visi	it <u>sowatermodels.com</u> .						
	(Documents below are in <u>BDC</u> format.)							
	Show / Hide All Documents							
	Monthly Progress Reports	Ø						
	Legislative Quarterly Reports	Ø						
	Technical Reports	Ø						
	Technical Memorandums	0						
	Heating Notes	0						
	Presentations	\odot						
	Videos	\odot						
	River Basins	\odot						

👔 Facebook 📉 RSS Feed 💽 Twitter 😸 You Tube

Reade Canadina Department of National Reserves - Flame Sections (Associating) P204 Rembert C. Donnis Building, 1000 Association Street, Calumbia, SC 29301 (5) 2014 All nents reserves, especializations as any

Simplified Water Allocation Model (SWAM)

Simplified Water Allocation Model (SWAM)

- Developed in response to an increasing need for a desktop tool to facilitate regional and statewide water allocation analysis
- Calculates physically and legally available water, diversions, storage, consumption and return flows at user-defined nodes
- Used to support large-scale planning studies in Colorado, Oklahoma, Arkansas, and Texas

The Simplified Water Allocation Model is...

- A water accounting tool
- A WHAT-IF simulation model
- A network flow model that traces water through a natural stream network, simulating withdrawals, discharges, storage, and hydroelectric operations
- Not precipitation-runoff model (e.g., HEC-HMS)
- Not a hydraulic model (e.g. HEC-RAS)
- Not a water quality model (e.g., QUAL2K)
- Not an optimization model
- Not a groundwater flow model (e.g., MODFLOW)

The Models Can Be Used To...

- Determine surface-water availability
- Predict where and when future water shortages would occur
- Test alternative water management strategies, new operating rules, and "what-if" scenarios
- Consolidate hydrologic data
- Evaluate the impacts of future withdrawals on instream flow needs
- Evaluate interbasin transfers
- Support development of Drought Management Plans
- Compare managed flows to natural flows
- Evaluate and test complex reservoir operating rules

Unimpaired Flows and Model Development

UIF Definition and Uses

- Definition: Estimate of natural historic streamflow in the absence of human intervention
- Unimpaired Flow =

Measured Gage Flow + River Withdrawals + Reservoir Withdrawals –Discharge to Reservoirs – Return Flow + Reservoir Surface Evaporation – Reservoir Surface Precipitation + Upstream change in Reservoir Storage + Runoff from Previously Unsubmerged Area

- Fundamental input to the model at headwater nodes and tributary nodes
- Comparative basis for model results

Saluda UIF Example

USGS streamflow gage 02165000 on Reedy River near Ware

Saluda UIF Example

 \bigcirc

USGS gages on North Fork (02173500) and South Fork (02173051) Edisto Rivers

Model Development, Calibration, and Verification

Two Versions of Every Model

 Calibration with UIFs and historic use records

 Baseline: planning with UIFs, current uses, and user-defined future uses

Calibration/Validation General Approach

- 1983 2013 hindcast period; monthly timestep first
 - Includes droughts in both early and late 2000's
- Comparison to gaged (measured) flow data
 - Operations and impairments are implicit in that data
- Assess performance at (subject to gage data availability):
 - Multiple mainstem locations
 - Tributary confluence locations
 - Major reservoirs
- Multiple model performance metrics, including:
 - Timeseries plots (monthly and daily variability)
 - Annual and monthly means (water balance and seasonality)
 - Percentile plots (extremes and frequency)

Potential Sources of Model Error & Uncertainty

- Gaged flow data
- Gaged reservoir levels
- Basin climate and hydrologic variability
- Reported withdrawal and discharge data
- Hindcasted withdrawal and discharge data
- Return flow locations and lag times (if applicable, e.g. outdoor use)
- Reservoir operations (operator decision making)
- Reach hydrology: gains, losses, local runoff and inflow

Monthly Flow Comparison

 \bigcirc

Daily Flow Comparison – Drought Period

 \bigcirc

Lake Murray Verification Exercise

 Approach: Set the Lake Murray release equal to the historical release, then run the model to check that the combination of inflow, evaporation, and withdrawals/discharges result in a reasonable match of historical lake levels/storage.

Lake Murray Verification Exercise

 Adjustments: Adjust inflow by selecting alternative reference gages for headwater inputs at select, ungaged tributaries

 Results: Better match of modeled and measured Lake Murray storage

Baseline Model

- Represents current demands and operations combined with an extended period of estimated hydrology
 - Most demands reflect 2005-2013 averages
 - Estimated hydrology from 1920's-30's to 2013
 - Current reservoir rules, guide curves, minimum releases
 - Rules can be adjusted
 - Inactive users are not included
- The baseline model serves as the starting point for future predictive simulations

Example Use

Assessing a New M&I User – Edisto Example

- Add model flow gage at proposed withdrawal location
 - Calculate minimum instream flows (20/30/40 Rule)
- Add a new M&I permittee
 - Demand = 500 MGY (0.6-2.6 MGD)
 - Can the river sustain the new user?
- Enter minimum instream flows in user object
 - Are there shortages, i.e. does the withdrawal cause streamflow to drop below the minimum instream flow?

Note that this example does not necessarily represent how DHEC will use the model to evaluate a proposed withdrawal

Add Flow Gage from Palette

Add Industrial Water User Object from Palette

Add Flow Gage & Industrial Water User Objects

Specify Flow Gage Location

Run the Model over the Entire Period of Record

Calculate the Minimum Instream Flows

Model Output:

	Reach / mi				
	Bull Swamp Creek / 15				
Date	Test Gage Flow (CFS)				
Min	5				
Max	96				
Avg	25				
1/1/32	34.7				
1/2/32	34.7				
1/3/32	34.7				
1/4/32	37.8				
1/5/32	34.7				
1/6/32	34.7				
1/7/32	37.8				
1/8/32	43.7				
1/9/32	50.3				
1/10/32	53.4				
1/11/32	50.3				
1/12/32	50.3				
1/13/32	50.3				
1/14/32	53.4				
1/15/32	50.3				
1/16/32	46.9				
1/17/32	40.6				
1/18/32	37.8				
1/19/32	34.7				

Minimum Flow Calculations:

	: 40%
	: 30%
	: 20%
	Instream
	Flow
Month	(cfs)
Jan	10.3
Feb	10.3
Mar	10.3
Apr	10.3
May	7.7
Jun	7.7
Jul	5.2
Aug	5.2
Sep	5.2
Oct	5.2
Nov	5.2
Dec	7.7

Add the New User in the Water User Dialogue

Specify Water Use

Specify the Source and Diversion Location

Designate the Return Location

Run the Model over the Entire Period of Record

Build a Shortage Plot for the New User

Add Minimum Flows

Re-Run the Model

Shortages with Min. Instream Flows Enforced

Shortages with Min. Instream Flows Enforced: 2007

Shortages also Available in Node Output Table

					Permit	Ditch Capacity	<u>Storage</u>	<u>Storage</u> <u>Withdraw</u>		
		Priority Rank	Reach	Location	(MGM)	(CES)	(MG)	(MGM)		
	IN: New	49	Bull Swamp Creek	15	1000	1000	0	325829		
			p		GW		-	Return		Evap
Date	Physically Avail. (MGD)	Legally Avail. (MGD)	Diverted (MGD)	Storage (MG)	Pumping (MGD)	Demand (MGD)	Shortage (MGD)	Flow (MGD)	Release (MGD)	Losses (MGD)
Min	2	0	0	0	0	1	0	0	0	0
Max	67	36	3	0	0	3	2	1	0	0
Avg	17	11	1	0	0	1	0	1	0	0
1/31/06	17	8	1	0	0	1	0	1	0	0
2/28/06	15	5	1	0	0	1	0	1	0	0
3/31/06	10	0	0	0	0	1	1	0	0	0
4/30/06	8	0	0	0	0	1	1	0	0	0
5/31/06	5	1	1	0	0	2	1	0	0	0
6/30/06	17	13	2	0	0	2	0	1	0	0
7/31/06	7	4	3	0	0	3	0	1	0	0
8/31/06	11	9	2	0	0	2	0	1	0	0
9/30/06	11	8	2	0	0	2	0	1	0	0
10/31/06	9	6	1	0	0	1	0	1	0	0
11/30/06	17	14	1	0	0	1	0	1	0	0
12/31/06	16	10	1	0	0	1	0	1	0	0
1/31/07	20	11	1	0	0	1	0	1	0	0
2/28/07	18	8	1	0	0	1	0	1	0	0
3/31/07	17	6	1	0	0	1	0	1	0	0
4/30/07	10	0	0	0	0	1	1	0	0	0
5/31/07	7	2	2	0	0	2	0	1	0	0
6/30/07	11	7	2	0	0	2	0	1	0	0
7/31/07	6	4	3	0	0	3	0	1	0	0
8/31/07	5	3	2	0	0	2	0	1	0	0
9/30/07	2	0	0	0	0	2	2	0	0	0
10/31/07	5	2	1	0	0	1	0	1	0	0
11/30/07	6	3	1	0	0	1	0	1	0	0
12/31/07	17	11	1	0	0	1	0	1	0	0
Main No	de Output	Reservoir Outp	ut Flow Gage Ou	itput Aq	uifer Outpu	it 🕂				

Other Example Uses

- Determine surface water availability
- Predict where and when future water shortages would occur
- Test alternative water management strategies, new operating rules, and "what-if" scenarios
- Evaluate the impacts of future withdrawals on instream flow needs
- Evaluate interbasin transfers
- Consolidate hydrologic data

Nina Caraway carawaynm@cdmsmith.com 919-325-3553