

51778
AECOM
10 Patewood Drive
Bldg. 6, Suite 500
Greenville, South Carolina 29615
www.aecom.com

May 17, 2016

Ms. Addie Walker, Project Manager
SC Department of Health and Environmental Control
Bureau of Land and Waste Management
2600 Bull Street
Columbia, SC 29201

Re: Post Remedial Investigation Report
Delavan Spray Technologies Site
Bamberg, South Carolina
SCDHEC VCC Number 13-4762-RP
SCDHEC File Number 51778
AECOM Project Number 60314964

Dear Ms. Walker:

On behalf of United Technologies Corporation (UTC), AECOM is providing you one (1) hard copy and one (1) electronic copy of the Post Remedial Investigation Report for the Delavan Spray Technologies Site.

If you have any questions or require further information, please feel free to contact me.

Sincerely,

AECOM Technical Services, Inc.

Walter C. Gerald

Walter C. Gerald, P.G.
Project Manager
864-234-8925
walter.gerald@aecom.com

cc: Mr. Bill Penn – United Technologies Corporation
Ms. Evelyn Rogers, PE – AECOM
Ms. Leslee Alexander, PG – AECOM
Project File 60314964

RECEIVED

MAY 18 2016

**SITE ASSESSMENT,
REMEDIATION &
REVITALIZATION**

Post Remedial Investigation Report

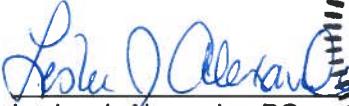
**United Technologies Corporation
Delavan Spray Technologies Site
4334 Main Highway
US Highway 301 South
Bamberg, South Carolina**

VCC 13-4762-RP

Prepared by:

AECOM Technical Services, Inc.
10 Patewood Drive
Building 6, Suite 500
Greenville, South Carolina

May 17, 2016

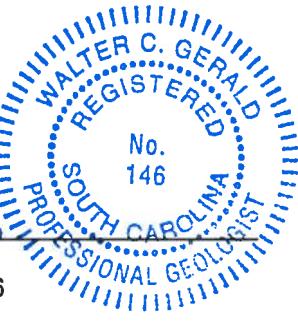
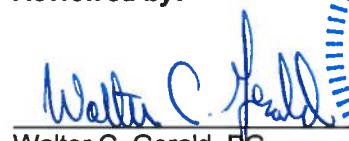

POST REMEDIAL INVESTIGATION REPORT

UNITED TECHNOLOGIES CORPORATION (UTC) DELAVAN SPRAY TECHNOLOGIES SITE BAMBERG, SOUTH CAROLINA

RESPONSIBILITY PARTY VOLUNTARY CLEANUP CONTRACT NUMBER 13-4762

The undersigned certify that they have reviewed the attached document and that the document is in material compliance with the guidelines and requirements of the State of South Carolina and the South Carolina Department of Health and Environmental Control (SCDHEC) and specifically, requirements under the SCDHEC Voluntary Cleanup Contract (VCC). The data presentations contained herein are consistent with generally accepted practices in the environmental profession.

Prepared by:

Leslee J. Alexander, PG
South Carolina PG No. 2433
AECOM Project Hydrogeologist

May 17, 2016

Date

Reviewed by:

Walter C. Gerald, PG
South Carolina PG No. 146
AECOM Project Manager

May 17, 2016

Date

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
1.0 INTRODUCTION.....	1
1.1 Report Organization.....	1
2.0 ADDITIONAL ASSESSMENT	2
2.1 Pre-Investigation Activities	2
2.2 Slug Testing	2
2.3 Additional Soil Sampling	3
2.4 Additional Groundwater Assessment.....	4
2.5 Investigation-Derived Waste Management.....	7
3.0 INVESTIGATION RESULTS	9
3.1 Hydrogeologic Properties.....	9
3.2 Soil Assessment.....	9
3.3 Groundwater Assessment.....	11
3.4 Investigation-Derived Waste	12
4.0 CONCLUSIONS AND RECOMMENDATIONS.....	13
5.0 REFERENCES.....	15

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>
1	Site Location Map
2	Site Layout Map
3	Soil Boring Location Map
4	Background Sample Map
5	Sample Results for VOCs in Soil
6	Sample Results for TOD in Background Soil
7	PCE Detections Shallow Groundwater – October/December 2015
8	TCE Detections Shallow Groundwater – October/December 2015
9	Cis-1,2-DCE Detections Shallow Groundwater – October/December 2015
10	1,1-DCE Detections Shallow Groundwater – October/December 2015
11	PCE Detections Deeper Groundwater – October/December 2015
12	TCE Detections Deeper Groundwater – October/December 2015
13	cis-1,2-DCE Detections Deeper Groundwater – October/December 2015
14	1,1-DCE Detections Deeper Groundwater – October/December 2015

LIST OF TABLES

<u>Table</u>	<u>Title</u>
1	Summary of New Monitoring Well Construction Details
2	Summary of Slug Test Results
3	Analytical Results for Soil Samples – VOCs
4	Analytical Results for Soil Samples – TOD
5	Analytical Results for Soil Samples – QA/QC
6	Analytical Results for Groundwater Samples – VOCs
7	Analytical Results for Groundwater Samples – QA/QC
8	Analytical Results for Investigation-Derived Waste Sample
9	Summary of Analytical Data Qualifiers
10	Proposed Sampling Plan

LIST OF APPENDICES

Appendix **Title**

A	Field Documentation
	➤ Calibration Records
	➤ Tailgate Safety Meeting Logs
	➤ Test Boring Reports
	➤ Water Well Records
	➤ Monitoring Well Construction Details
	➤ Monitoring Well Development Logs
	➤ Field Data Logs for Groundwater Sampling
	➤ Chain of Custody Forms
	➤ IDW Management Form
	➤ Logbooks
B	Monitoring Well Permit Approval
C	Slug Test Analysis
D	Laboratory Analytical Data
	➤ Laboratory Reports
	○ Accutest Laboratories Southeast
	○ Eurofins Spectrum Analytical
	➤ Data Validation Reports

1.0 INTRODUCTION

The Delavan Spray Technologies Site (the "Site") is located at 4334 Main Highway (US Highway 301 South) in the town of Bamberg, South Carolina (Figure 1). Previous assessments have documented chlorinated volatile organic compounds (VOCs) in soil and groundwater related to their historic use at the facility. Additional Site background and history were reported in detail in Section 2.0 of the *RI Report* (AECOM, July 2014).

In 2014 a Remedial Investigation (RI) was completed at the Site to assess soils, surface water, groundwater and vapor intrusion pathways. As part of the RI, a Baseline Risk Assessment (BRA) was performed to evaluate potential risks to human and ecological receptors.

Based on comments received from the South Carolina Department of Health and Environmental Control (SCDHEC) to the RI Report and to the subsequent *Fall 2014 Semi-Annual Groundwater Monitoring Report* (AECOM, January 2015), additional assessment was deemed necessary to address some data gaps (SCDHEC, correspondence of May 6 and May 7, 2015). The *Post RI Investigation Work Plan* (AECOM, June 2015) was submitted to address these data gaps, including:

- Further assessment in the deep limestone aquifer to the southwest;
- Further soil assessment in the vicinity of the northern degreaser, located in the Wickman room; and
- Installation of an additional shallow monitoring well toward the western corner of the property.

Assessment activities were completed between November 30, 2015 and December 4, 2015.

1.1 Report Organization

This report documents the activities completed as part of the Post RI Investigation and presents the results. The report is organized into five sections. Section 1 presents an introduction and overview of the project. The field and analytical methods used to generate the environmental quality data are outlined in Section 2. Section 3 discusses the environmental quality data and results of the field investigation. A summary and conclusions that may be drawn from the data are presented in Section 4. Pertinent references cited in the report are presented in Section 5.

2.0 ADDITIONAL ASSESSMENT

Field data acquisition methodologies were designed to be in general accordance with the United States Environmental Protection Agency (USEPA) Region 4 Science and Ecosystem Support Division (SESD) Field Branches Quality System and Technical Procedures document (<http://www.epa.gov/region4/secd/fbqstp/>) (most recent version). Field activities were conducted in accordance with the *Post RI Investigation Work Plan* (AECOM, June 2015) and Appendix B to the *RI Work Plan* (Hart & Hickman, August 2013). Field documentation is provided in Appendix A of this report.

2.1 Pre-Investigation Activities

The monitoring wells proposed for the deep limestone aquifer were located off-Site (Figure 2); therefore, an updated access agreement was obtained from the property owner prior to the installation of the monitoring wells. After obtaining off-Site property access and prior to conducting intrusive sampling activities, the South Carolina One-Call public utility service was contacted to mark public utilities at the Site and vicinity. GEL Geophysics, LLC, a private utility locator from Charleston, South Carolina, was contracted to confirm the one-call markings and to mark the location of potential private subsurface utilities in the area of the proposed sampling locations.

Prior to mobilization, a monitoring well permit application was submitted to SCDHEC. The permits are included in Appendix B.

2.2 Slug Testing

Slug tests were performed in shallow monitoring wells MW-1, MW-5, and MW-21 and deeper monitoring wells MW-21D and MW-22D in order to evaluate hydrologic properties of the aquifers beneath the Site. Slug tests were conducted using falling head and rising head tests. Falling head tests were conducted by inserting a decontaminated, solid PVC cylinder (aka, "slug") into the well and monitoring the water levels as they declined downward toward the static level. Rising head tests were conducted by removing the slug from a well and monitoring the water levels as they rose up toward the static level. Falling head slug tests were not performed in wells with partially saturated screens.

Prior to initiating the test, the static water level in the well was measured with an electronic water level meter and recorded. A decontaminated pressure transducer was then lowered at least 8 to 10 feet below the static water level or within one foot of the bottom of the well. The static water level was again measured and recorded and the measurement was repeated until water level equilibrium was verified (i.e., two equal readings taken at least five minutes apart). The slug was then attached to clean, new synthetic rope. The falling head test was initiated by instantaneously lowering the cylinder into the well, resulting in an immediate water level rise. The data logger was activated to measure the declining (falling) water levels. When the water level had returned to static conditions, the rising head slug test was

conducted. For the rising head test, the data logger was activated as the cylinder was instantaneously removed from the well (resulting in an immediate water level decline) and the rising water levels were measured. Water levels were monitored until they were within 10 percent of their original static level.

Multiple tests were conducted on each well to ensure a representative test result. Falling head slug tests were not conducted in monitoring wells MW-1 and MW-5 because these wells are screened across the water table. The results of the slug testing are discussed in Section 3.1 of this Report.

2.3 Additional Soil Sampling

Former Degreaser Areas

Four soil borings were installed in the vicinity of the northern former degreaser, located in the Wickman Room, to further evaluate the concentration and occurrence of chlorinated VOCs beneath the manufacturing facility (Figure 3). At each location, a 4-inch core was cut from the concrete to allow access to complete the borehole. Soil boring DPT-58, located outside and just north of the Wickman Room, was completed using 54DT track-mounted Geoprobe® rig. Soil borings DPT-59 through DPT-61, located inside the Wickman Room, were completed using hand augers. All soil borings were advanced to approximately 15 to 16 feet below ground surface (bgs).

Soil borings were installed by a state of South Carolina-licensed driller from SAEDACCO, Inc., a drilling contractor located in Fort Mill, South Carolina. Soil boring were logged for lithology by an AECOM geologist and were screened for VOCs (headspace) using a MiniRAE 2000 hand-held organic vapor monitor (photoionization detector [PID]). Lithologic descriptions, observations, and headspace readings were recorded on the Test Boring Reports included in Appendix A. Two soil samples were selected from each boring based on field screening (i.e., elevated PID readings, visual methods, olfactory observations, etc.) and were collected in accordance with the procedures in the *RI Work Plan* (Hart & Hickman, August 2013). Each soil sample was collected over a one-foot interval and the sample identification incorporated the bottom of the depth interval. Soil samples from the selected intervals were submitted to Accutest Laboratories Southeast, a South Carolina-certified laboratory located in Orlando, Florida for laboratory analysis of VOCs by USEPA method 8260B.

Following soil sampling, the borings were converted to monitoring points for potential future monitoring or remediation. Monitoring points were constructed using 1-inch poly-vinyl chloride (PVC) with a 0.010-inch machine slot, pre-packed well screen from 5 to 15 feet bgs. The annulus around the well screen were filled with a clean filter sand, as needed, and filter sand was emplaced to approximately 1 foot above the top of the well screen. A one-foot thick layer of bentonite clay chips was used to seal the monitoring point and was hydrated with potable water, as necessary. A neat cement-bentonite grout was then emplaced from above the bentonite seal to within approximately 6-inches below the finished concrete floor or surface. The surface completions for the 1-inch shallow monitoring points consisted of a 4- inch diameter

cast-iron vault with a bolt down lid. The vaults were flush-mounted into the core holes and grouted in place flush with the floor with high strength concrete. Soil cuttings and decontamination fluids were containerized in 55-gallon drums and stored at a designated location on-Site as investigation-derived waste (IDW) as described in Section 2.6 below.

Background Areas

In order to determine the background oxidant demand for potential future remedial planning, additional soil samples were collected in the vicinity of RI soil sample locations BG-3 and BG-5 (see Figure 3-2 of the *RI Report*; AECOM, July 2014) for analysis of total oxidant demand (TOD). Soil borings were installed in the vicinity of BG-3 and BG-5 by SAEDACCO, Inc. using a 54DT track-mounted Geoprobe® rig.

Two soil borings, located approximately one-foot apart, were installed at locations BG-6 and BG-7 (Figure 4). Samples were collected by compositing the 4 to 6 foot and 8 to 10 foot intervals from each location to get a representative sample for TOD analysis. Upon collection, the composite soil samples were placed in an ice-filled cooler, maintained under chain-of-custody protocol, and shipped to Eurofins Spectrum Analytical, located in Agawam, Massachusetts for analysis of TOD.

Surveying

Following the soil sampling and installation of the monitoring points, the ground surface elevations, top of casing elevations, and the horizontal locations of the monitoring points and borings were surveyed by an AECOM surveyor licensed in South Carolina. Horizontal locations were reported in South Carolina State Plane Coordinates referenced to North American Datum of 1983 (NAD-83) to the nearest 0.01 foot. Ground surface and top of casing elevations were referenced to North American Vertical Datum of 1988 (NAVD-88) to the nearest 0.01 foot. The survey information is included in Table 1 and was used to update the Site base map.

2.4 Additional Groundwater Assessment

In accordance with SCDHEC's correspondence of May 6 and 7, 2015 for further groundwater assessment, one additional shallow monitoring well (MW-24) and two additional deeper limestone aquifer monitoring wells (MW-25D and MW-26D) were drilled and installed using sonic drilling techniques (Figure 2). Details regarding the field activities related to the additional groundwater assessment are presented in the subsections below.

Borehole Drilling

For both the shallow and deeper monitoring wells, a South Carolina licensed driller from SAEDACCO, Inc., used sonic drilling techniques to advance the boring to the target depth. The sonic rig utilized a 6-inch diameter outer casing and a 4-inch diameter inner core barrel. Per the Site Walk with SCDHEC on June 3, 2015 and as documented in the *Post RI Work Plan* (AECOM, June 2015), the temporary drill casing was used to seal the upper aquifer during drilling and well installation of the deeper limestone monitoring wells and, therefore, a permanent surface casing did not need to be installed.

Soil samples were extruded from the inner core barrel into plastic sleeves for lithological logging by an AECOM geologist. Soil samples were screened for organic vapors using a MiniRAE 2000 hand-held VOC monitor (PID). Lithologic details, organic vapor screening results, and other observations were recorded by the AECOM geologist on the Test Boring Reports included in Appendix A. Soil cuttings and drilling fluids were containerized in 55-gallon drums and stored at a designated location on-Site as IDW as described in Section 2.6 below.

Monitoring Well Installation

Per the *Post RI Work Plan* (AECOM, June 2015), the target installation depth for the shallow monitoring well (MW-24) was 20 feet bgs and the target depth for the deeper monitoring wells (MW-25D and MW-26D) was 50 feet bgs. The borehole for MW-24 was advanced to 27 feet bgs and the well was screened from 6 to 21 feet bgs, immediately above the first indication of limestone (calcareous sands with shell fragments). The screen intervals for the deeper monitoring wells MW-25D and MW-26D were adjusted in the field, as needed, based on the organic vapor readings. The boreholes for MW-25D and MW-26D were advanced to 67 feet bgs and 52 feet bgs, respectively. Monitoring well MW-25D was screened from 52 to 62 feet bgs based on organic vapor readings of 1.1 parts per million (ppm) to 2.8 ppm in this interval compared to 0.6 ppm to 0.9 ppm below this interval. The organic vapor readings in the boring for MW-26D were uniform throughout at 0 to 1 ppm and the monitoring well was screened from 38 to 48 feet bgs.

All monitoring wells were installed through the center of the sonic core barrel and were constructed of 2-inch diameter Schedule 40 PVC casing and 0.010-inch machine slotted PVC screen. The shallow monitoring well (MW-24) was constructed with 15 feet of PVC screen and the two deeper wells (MW-25D and MW-26D) were constructed with 10 feet of PVC screen. Filter sand was placed into the annular space of each well and extended approximately one- to two-feet above the top of the well screen. A pelletized bentonite clay seal 1.5- to 3-feet thick was placed in the annular space above the filter sand and hydrated with potable water, as necessary. As the filter sand and bentonite clay were added, the core barrels were pulled from the borehole to ensure the annulus was completely filled. Depths to sand and bentonite were monitored with a weighted tape measure as the installation progressed. A neat cement-bentonite grout was then injected from above the bentonite seal to land surface via a tremie pipe.

The surface completions for the shallow and deep monitoring wells consisted of an 8-inch diameter cast-iron vault with a bolt down lid. Each vault was set flush-mounted into a two-foot-by-two-foot square pad of high strength concrete, which served as a surface seal. Monitoring Well Construction Details are provided on forms included in Appendix A and are summarized in Table 1.

Well Development

Upon installation, the groundwater monitoring wells were developed so that they produce representative groundwater samples. The monitoring wells were developed by AECOM personnel by surging and purging with an electric submersible pump. Groundwater indicator parameters [e.g. temperature, specific conductivity, dissolved oxygen (DO), pH, oxygen reduction potential (ORP) and turbidity] were measured using a water quality meter and recorded on AECOM Monitoring Well Development Logs included in Appendix A. Development of monitoring wells continued until parameters had stabilized and turbidity of the water was reduced as much as possible.

Purge water from well development was containerized in 55-gallon drums and stored at a designated location on-Site as IDW as described in Section 2.6.

Surveying

Following well installation, the top of casing and land surface elevations and the horizontal locations of the new wells were surveyed by an AECOM surveyor licensed in South Carolina. Horizontal locations were reported in South Carolina State Plane Coordinates referenced to the NAD-83 to the nearest 0.01 foot. Ground surface elevations and well top of casing elevations were referenced to the NAVD-88 to the nearest 0.01 foot. The survey information is included in Table 1 and was used to update the Site layout map (Figure 2).

Water Level Measurements

The depth to water from the surveyed top of casing measuring point from the three newly installed monitoring wells and all existing monitoring wells was measured on the first day of the semi-annual groundwater monitoring event (recently completed in April 2016). An electric water level indicator was used to collect water level measurements in general accordance with the USEPA Region 4 SESD Groundwater Level and Well Depth Measurement Operating Procedure (USEPA, January 2013). Depth to water was corrected to groundwater elevations to provide a thorough evaluation of groundwater occurrence and flow directions across the Site. The resulting potentiometric maps will be included in the upcoming spring 2016 semi-annual monitoring report.

Groundwater Sampling

As part of the additional assessment activities, groundwater samples were collected from the newly installed monitoring wells. Groundwater samples were collected using low flow/low stress sampling methods in accordance with the *RI Work Plan* (Hart & Hickman, August 2013), EPA's Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (EPA/540/S-95/504 dated April 1996) and as described in Appendix B of the *RI Work Plan*. Since drilling could not be scheduled in time to sample the new monitoring wells during the October 2015 semi-annual sampling event, new monitoring wells were sampled after they were developed instead of waiting until the next semi-annual sampling event. Groundwater sampling was completed using a peristaltic pump and flow-through cell for field parameter measurement. Sample bottles were placed in an ice-filled cooler, maintained under chain-of-custody protocol, and shipped to the analytical laboratory using Federal Express.

The monitoring well samples were analyzed for VOCs by USEPA method 8260B by Accutest Laboratories Southeast, a South Carolina-certified laboratory located in Orlando, Florida. Field measurements of DO, pH, conductivity, temperature, and ORP were collected from the sampled monitoring wells using a flow through cell and recorded on the Field Data Logs for Groundwater Sampling included in Appendix A.

As discussed in Section 3.3, groundwater quality data from the new monitoring wells was used in conjunction with data collected during the October 2015 semi-annual monitoring event to evaluate the occurrence and distribution of chlorinated VOCs in the two aquifer units beneath the Site.

2.5 Investigation-Derived Waste Management

IDW consisting of decontamination water, well development/purge water, and soils from drilling activities was containerized in 55-gallon steel drums, labeled, and temporarily staged on-Site until receipt of characterization analysis. Details regarding the drum contents, date filled, and date sampled were recorded on the IDW Management form included in Appendix A.

For characterization and disposal purposes, one composite sample was collected from the drums of IDW soil and submitted to Accutest Laboratories Southeast for analysis of Toxicity Characteristic Leaching Procedure (TCLP) VOCs (USEPA method 8260B), TCLP semi-volatile organic compounds (SVOCs; USEPA method 8270D), and TCLP priority pollutant metals (USEPA methods 6010C and 7470B). One composite sample from the drums of IDW decontamination water was collected for analysis of VOCs (USEPA method 8260B), SVOCs (USEPA method 8270D), and priority pollutant metals (USEPA methods 6010C and 7470B) by Accutest Laboratories Southeast. Drums of well development/purge water were characterized using sampling results from the monitoring wells.

Once received, the characterization and monitoring well sampling data was provided to the Environment, Health, and Safety (EH&S) contact at the UTC Delavan Spray Technologies Facility for use in IDW profiling and subsequent disposal by the Facility.

3.0 INVESTIGATION RESULTS

Results of hydrogeologic and environmental testing are presented in the subsections below. Hydrogeologic test results are summarized in Table 2 and presented in Appendix C. Analytical data and data validation reports are presented in Appendix D and summarized in Tables 3 through 8. Analytical data qualifiers are summarized in Table 9.

3.1 Hydrogeologic Properties

Slug test data were analyzed using Aqtesolv® version 4.5 – Professional (Duffield, 2007), a commercially available software package, and the methods of Bouwer and Rice (1976) and Bouwer (1989). The Bouwer and Rice technique is valid for water table or confined aquifers with partially- or fully-penetrating wells and was used for all wells where slug tests were conducted at the Site.

In certain situations, wells exhibit what is known as the “double straight-line effect” in response to a slug test. Graphs of slug test data exhibiting this effect are concave-up, and the multiple “straight-line” portions of the graph can lead to erroneous matching. Butler (1998) recommends matching to a normalized head (i.e., displacement at any given time divided by the initial displacement) range of 0.20 to 0.30 to increase the reliability of matching when using Bouwer and Rice. This correction is incorporated in the Aqtesolv® software package and was utilized for the analyses included in Appendix C. The recommended head range is distinguished by horizontal dotted lines on the graphs in Appendix C and was utilized as a guide for wells exhibiting the “double straight-line effect”.

A few tests (e.g., MW21-in1 and MW21d-out3) had “waves” in the early data, indicating that the slug movement was not smooth or the well response was too rapid. These data were not used to calculate slug test statistics. Other wells (e.g., MW-21D and MW-22D) exhibited a very rapid response to the test. While this rapid response resulted in less points to “fit” through for the analysis, the result is still considered valid.

The slug test results are summarized in Table 2. The estimated hydraulic conductivity values for the shallow wells ranged from 0.175 feet per day (ft/day) in MW-1 to 0.667 ft/day in MW-12, with a geometric mean of 0.350 ft/day. The estimated hydraulic conductivity values for the deeper wells ranged from 21.2 feet per day (ft/day) in MW-22D to 121 ft/day in MW-21D, with a geometric mean of 47.8 ft/day.

3.2 Soil Assessment

Northern Former Degreaser

Two soil samples were collected from each of the four borings in the vicinity of the former degreaser in the Wickman Room for a total of eight soil samples. The laboratory data packages and validation reports

are included in Appendix D and sample results are summarized in Table 3 along with their associated maximum contaminant level (MCL) –based Soil Screening Level (SSL) from the USEPA Regional Screening Level (RSL) table (USEPA, November 2015).

Six VOCs, 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), acetone, cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), and trichloroethene (TCE), were detected in the soil samples (Table 3 and Figure 5). PCE was detected in all eight samples at concentrations ranging from 0.0012 J (estimated) milligrams per kilogram (mg/kg) in DPT-58-11 to 0.343 mg/kg in DPT-61-6. Seven of the detected concentrations exceeded the MCL-based SSL for PCE. 1,1,2-TCA was detected in one sample (DPT-61-8) at an estimated concentration of 0.0017 J mg/kg, which exceeded the MCL-based SSL for 1,1,2-TCA. The remaining detected concentrations of VOCs did not exceed their respective MCL-based SSLs.

Background Soil

Background soil samples were analyzed for TOD in order to evaluate the background oxidant demand in vadose zone soils to aid in future evaluation of potential source area remedies. The TOD was analyzed using the following additives:

- 28.9 grams per liter (g/L) of 30% hydrogen peroxide and 2 grams per kilogram (g/kg) of ferrous sulfate;
- 10 g/L of persulfate;
- 20 g/L of persulfate;
- 20 g/L of permanganate; and
- 30 g/L of permanganate.

TOD results are provided in the laboratory reports in Appendix D and are summarized in Table 4 and Figure 6. Results varied across the different additives and concentrations of additive. The lowest TOD was measured using persulfate, where TOD results ranged from 8.0 g/kg to 11 g/kg. Results from using permanganate were in the mid-range, with measured TOD values ranging from 25 g/kg to 58 g/kg. Hydrogen peroxide with ferrous sulfate provided the highest TOD values, with measured TOD ranging from 131 g/kg to 144 g/kg.

Quality Control Samples

In accordance with Appendix B of the *RI Work Plan* (Hart & Hickman, August 2013) and in Tables 2 and 3 of the *Post RI Work Plan* (AECOM, 2015), quality control samples included soil rinseate blanks from the

hand auger bucket, field duplicates, and matrix spike/matrix spike duplicates. Quality control (QC) sample results for soil are presented in Table 5.

There were no compounds detected in the hand auger rinseate or the associated trip blank samples. Relative percent difference (RPD) was not calculated for the field duplicate sample results because the detected compounds in the primary sample were estimated (J-flagged). The result for PCE in sample DPT-61-8-a was qualified “/M/m” due to low recovery in the associated matrix spike sample. These qualifiers indicate the result should be considered biased low. The QC excursions encountered during the validation of this data did not result in the rejection of any data. There were no QC excursions in the remaining data and no other data flags were required. As a result of the validation process, the data should be considered compliant and adequate for its intended use.

3.3 Groundwater Assessment

VOCs

Following installation and development, groundwater samples from monitoring wells MW-24, MW-25D and MW-26D were analyzed for VOCs. Results for VOCs in new groundwater monitoring wells are presented in Table 6 and analytical data packages are presented in Appendix D.

Two compounds, cis-1,2-DCE and PCE, were detected in shallow monitoring well MW-24. One of these, PCE, was detected at a concentration of 344 micrograms per liter ($\mu\text{g}/\text{L}$), which is above the MCL for PCE (5 $\mu\text{g}/\text{L}$). No other compounds exceeded their respective MCLs in shallow well MW-24.

In the deeper aquifer wells MW-25D and MW-26D, four VOCs (1,1-dichloroethene [1,1-DCE], cis-1,2-DCE, PCE, and TCE) were detected. The detected concentrations of PCE in monitoring wells MW-25D (129 $\mu\text{g}/\text{L}$) and MW-26D (98.1 $\mu\text{g}/\text{L}$) exceeded the MCL for PCE (5 $\mu\text{g}/\text{L}$). None of the other detected compounds exceeded their respective MCLs in the deeper aquifer wells.

The analytical results from the newly installed wells were used to update maps of VOCs in groundwater from the *Fall 2015 Semi-Annual Monitoring Report* (AECOM, January 2016). Figures 7 through 10 illustrate PCE, TCE, cis-1,2-DCE, and 1,1-DCE for the shallow groundwater and Figures 11 through 14 illustrate the same compounds for the deeper groundwater.

As shown on Figure 7, MW-24 is out of the “source” area for PCE, but within the core of the shallow PCE plume as it moves to the west. Similarly, MW-25D and MW-26D appear to be in the core of the dilute PCE plume as it moves off-Site to the southwest in deeper groundwater.

Assessment Quality Control Samples

In accordance with Appendix B of the *RI Work Plan* (Hart & Hickman, August 2013) and in Tables 2 and 3 of the *Post RI Work Plan* (AECOM, 2015), QC samples for groundwater included trip blanks, field duplicates, and matrix spike/matrix spike duplicates. QC sample results for groundwater are presented in Table 7.

Methylene chloride, which is a common laboratory artifact and was not detected in the groundwater samples, was the only compound detected in the trip blank sample. The RPD between the primary sample and field duplicate sample results was 5% or less for all detected compounds. There were no QC excursions encountered during the validation of this data and the data should be considered compliant and adequate for its intended use.

3.4 Investigation-Derived Waste

Results for the solid and aqueous IDW samples are presented in Table 8 along with the associated USEPA Maximum Concentration of Contaminants for the Toxicity Characteristic (40CFR§261.24 Toxicity Characteristic, 2007). Although several compounds were detected in the IDW samples, none of the concentrations exceeded the maximum value for toxicity characteristic. Therefore, based on the analytical testing, the IDW was not characteristically hazardous for disposal.

Waste profiling and disposal will be coordinated by the local EH&S contact at the Delavan Facility.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be made from the data collected during this investigation:

- The hydraulic conductivity in the shallow aquifer estimated from slug tests was 0.175 ft/day to 0.667 ft/day, with a geometric mean of 0.350 ft /day. This is comparable to previous slug test results from the shallow aquifer which yielded a geometric mean hydraulic conductivity of 0.13 ft/day (Hart & Hickman, August 2013).
- The hydraulic conductivity in the deeper aquifer estimated from slug tests was 21.2 ft/day to 121 ft/day, with a geometric mean of 47.8 ft /day. This is comparable to, but slightly greater than, previous slug test results from the deeper aquifer which yielded a geometric mean hydraulic conductivity of 28 ft/day (Hart & Hickman, August 2013).
- The soil sample results from the Northern Former Degreaser in the Wickman Room provide additional delineation in this source area. Concentrations were within the range detected during the RI (AECOM, July 2014), but the maximum detected concentration of PCE during this investigation (0.343 mg/kg) was orders of magnitude less than that detected during the RI (85.4 mg/kg).
- Soil samples from DPT-61, installed adjacent to 2012 soil boring DPT-3 confirmed the presence of PCE at this location, however, the detected concentrations during this investigation (0.0709 mg/kg to 0.0759 mg/kg) were orders of magnitude less than those detected during the 2012 investigation (4.82 mg/kg).
- The TOD results show a wide range for various soil additives. This information will be useful in the evaluation of potential remedies for the “source” area.
- The location of MW-24 helps to delineate the PCE plume in the shallow aquifer on the west side of the Site. The groundwater sampling results indicate that this well is out of the “source area” but still within the core of the PCE plume that is moving off-Site to the west in shallow aquifer groundwater.
- Deeper aquifer monitoring wells MW-25D and MW-26D provide further delineation of the PCE plume in the deeper aquifer as it moves off-Site to the southwest. Groundwater sampling results confirm the presence of PCE above the MCL in these wells but, on the off-Site property, PCE concentrations decrease with distance from the Facility.

Based on the data collected to date and the results of this investigation, it is recommended that semi-annual groundwater monitoring continue for the Site. A proposed list of wells and analytes for the next two sampling events is provided in Table 10. Upon concurrence from SCDHEC, this plan will be implemented on the current sampling schedule. The next event is currently scheduled for June 2016.

The existing data from the RI confirm the presence of VOCs, especially PCE, in subsurface soil samples (AECOM, 2014). Furthermore, concentrations of PCE, and, in some cases, TCE, cis-1,2-DCE, 1,1-DCE and methylene chloride, exceeded their respective MCL-based SSL in one or more subsurface soil samples collected during the RI and post RI. Groundwater concentrations of PCE are highest in the immediate vicinity of former PCE degreasers, and analytical data indicate that these suspected "source areas" are contributing to the on-going groundwater plume beneath the Site. As stated in Section 3.C of the Voluntary Cleanup Contract (VCC) for the Site (SCDHEC, 2013), it is recommended that a Focused Feasibility study be prepared to evaluate options to remediate the VOC contamination in subsurface soils in the vicinity of the Former PCE Degreasers. PCE concentrations in soil and groundwater in the vicinity of the Former PCE Degreasers are up to three to four orders of magnitude higher than in the other areas. Therefore, remediating the areas near the Former PCE Degreasers would likely be the quickest way to mitigate the on-going shallow groundwater plume of VOCs on-Site and deeper aquifer migration of VOCs off-Site.

5.0 REFERENCES

AECOM, January 14, 2016. *Fall 2015 Semi-Annual Groundwater Monitoring Report, Delavan Spray Technologies Site, Bamberg, South Carolina.*

AECOM, June 29, 2016. *Post Remedial Investigation Work Plan, Delavan Spray Technologies Site, Bamberg, South Carolina.*

AECOM, January 8, 2015, *Fall 2014 Semi-Annual Groundwater Monitoring Report, Delavan Spray Technologies Site, Bamberg, South Carolina.*

AECOM, July 3, 2014. *Remedial Investigation Report, United Technologies Corporation, Delavan Spray Technologies Site, 4334 Main Highway, US Highway 301 South, Bamberg, South Carolina, VCC 12-4762-RP.*

Bouwer, H., 1989. The Bouwer and Rice slug test--an update, *Ground Water*, vol. 27, no. 3, pp. 304-309.

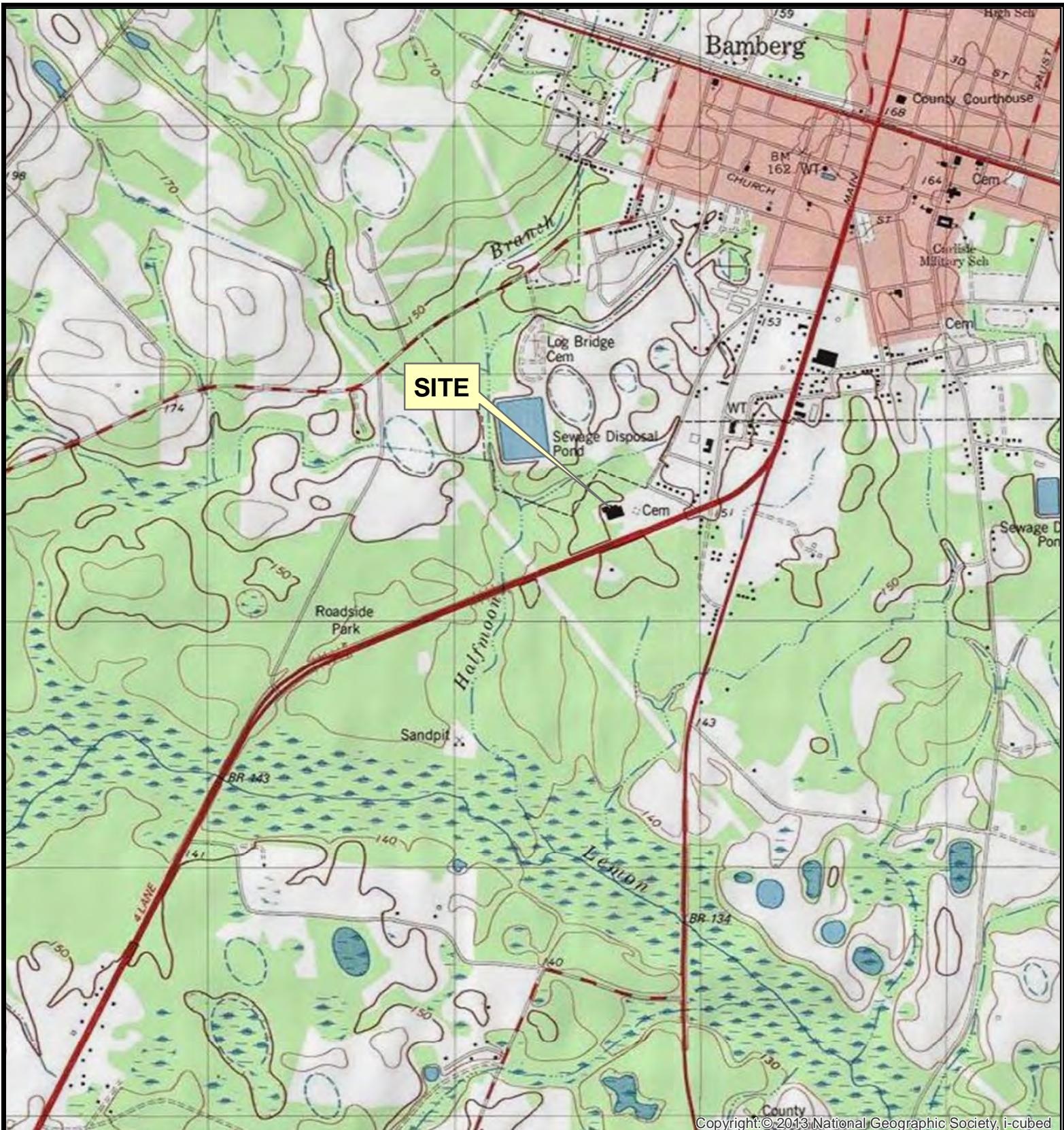
Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, *Water Resources Research*, vol. 12, no. 3, pp. 423-428.

Butler, J.J., Jr., 1998. *The Design, Performance, and Analysis of Slug Tests*, Lewis Publishers, Boca Raton, Florida, 252p.

Code of Federal Regulations, 2007. Toxicity Characteristic, Title 40, Section 261.24 (40CFR§261.24, 2007).

Duffield, G.M., 2007. *AQTESOLV for Windows Version 4.5 User's Guide*, HydroSOLVE, Inc., Reston, VA.

Hart & Hickman, August 1, 2013, *Remedial Investigation Work Plan, Delavan Spray Technologies Site, Bamberg, South Carolina, VCC 12-4762-RP.*


SCDHEC, May 6, 2015, Correspondence regarding Remedial Investigation Report dated July 3, 2014, Goodrich Delavan Spray Technology Site, Bamberg County, VCC #13-4762-RP, File #51778 (Former Site ID ##02211).

SCDHEC, May 7, 2015, Correspondence regarding Fall 2014 Semi-Annual Groundwater Monitoring Report, Goodrich Delavan Spray Technology Site, Bamberg County, VCC #13-4762-RP, File #51778 (Former Site ID ##02211).

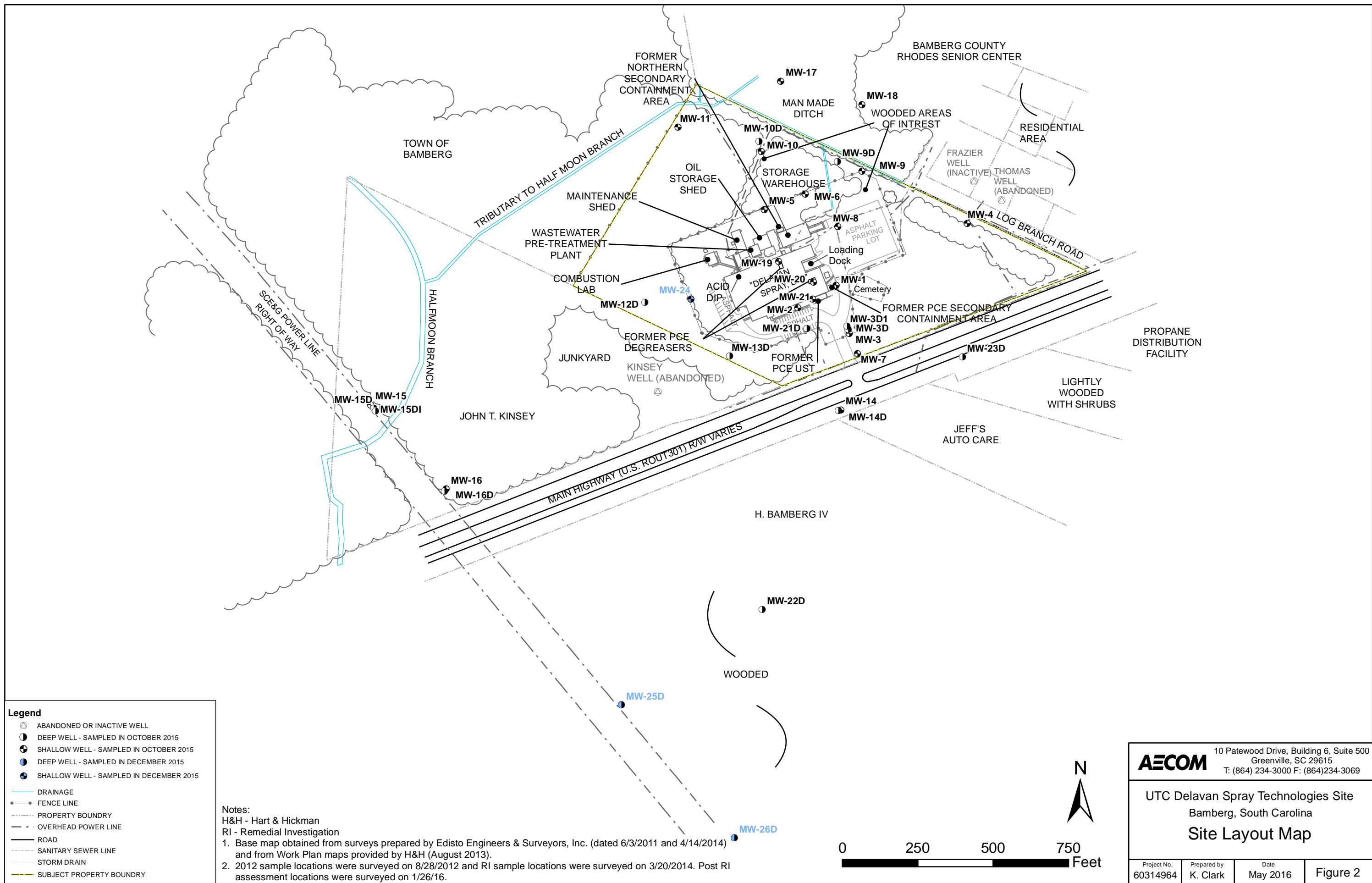
USEPA, April 1996. *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures* (EPA/540/S-95/504 dated April 1996).

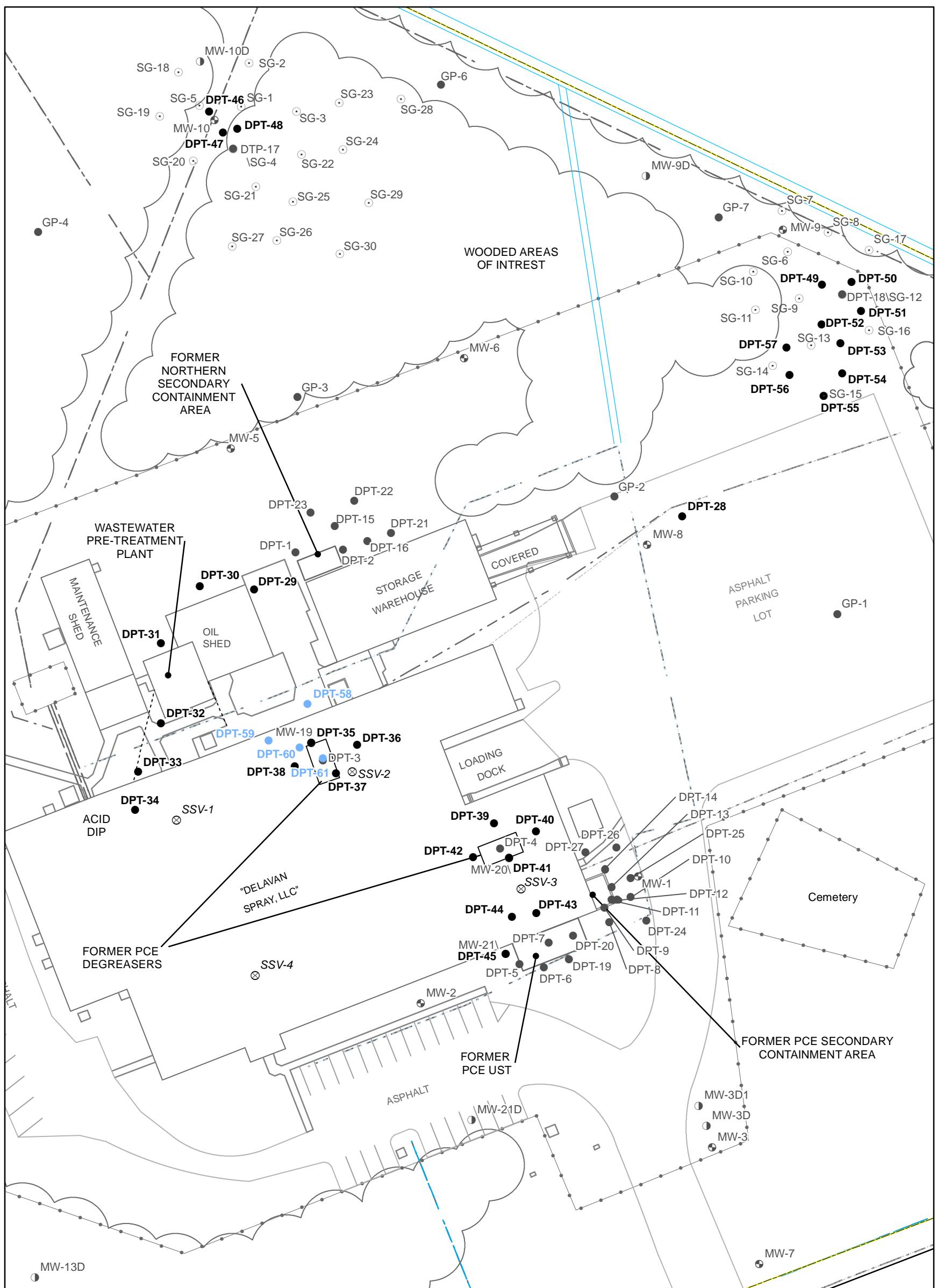
USEPA, January 2013. *USEPA Region 4 SESD Groundwater Level and Well Depth Measurement Operating Procedure.*

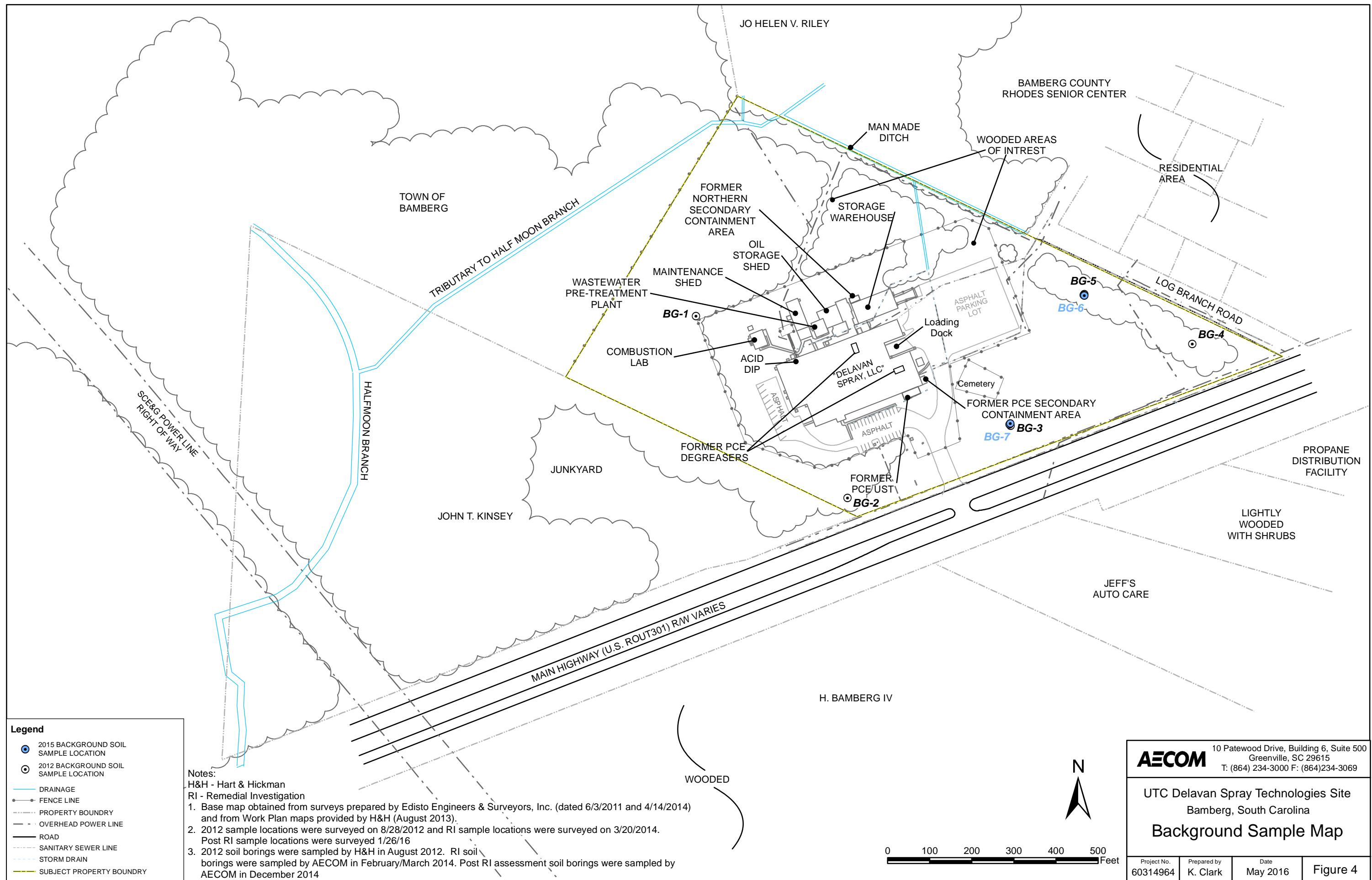
FIGURES

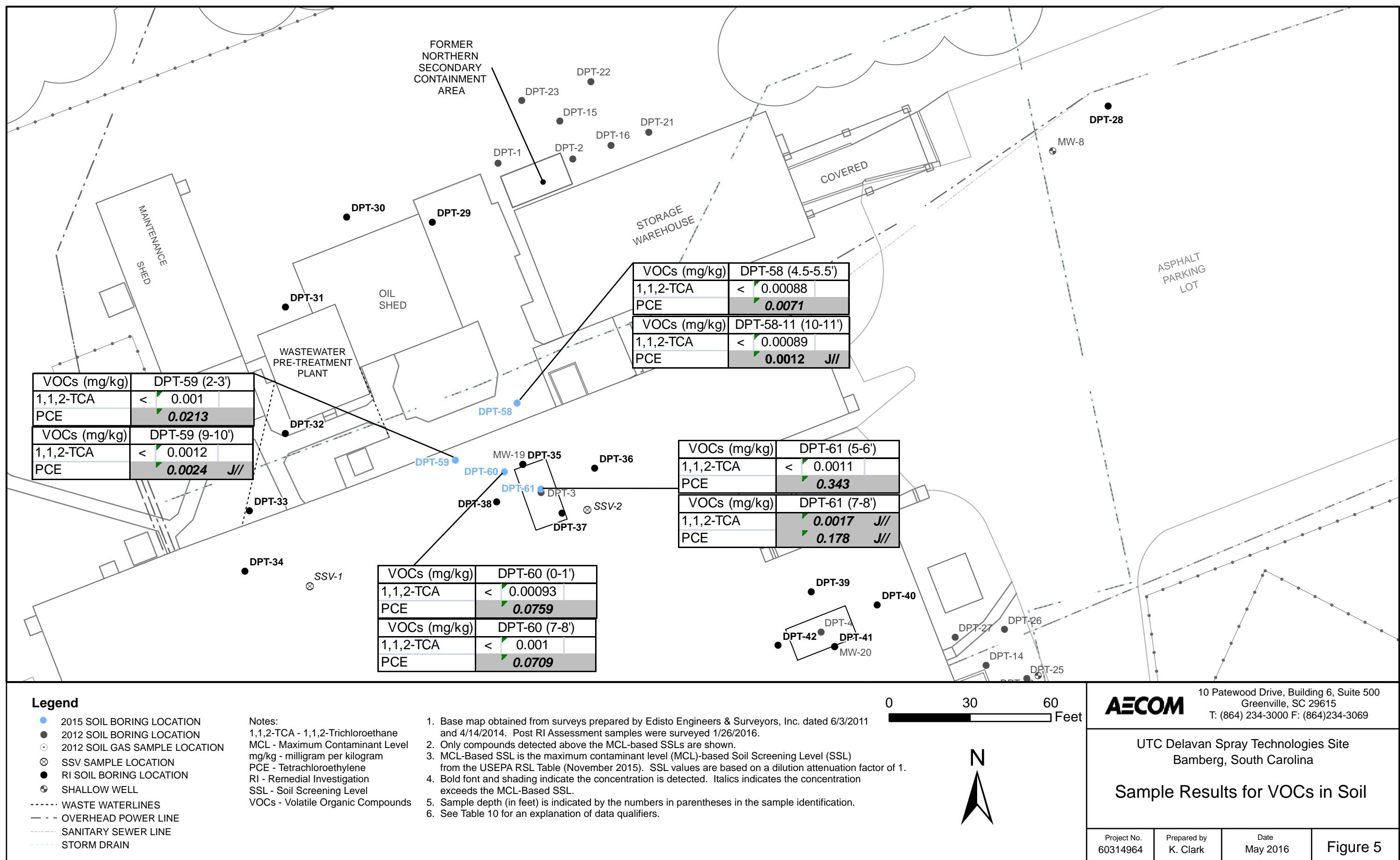
0 500 1,000 2,000 3,000 4,000
Feet

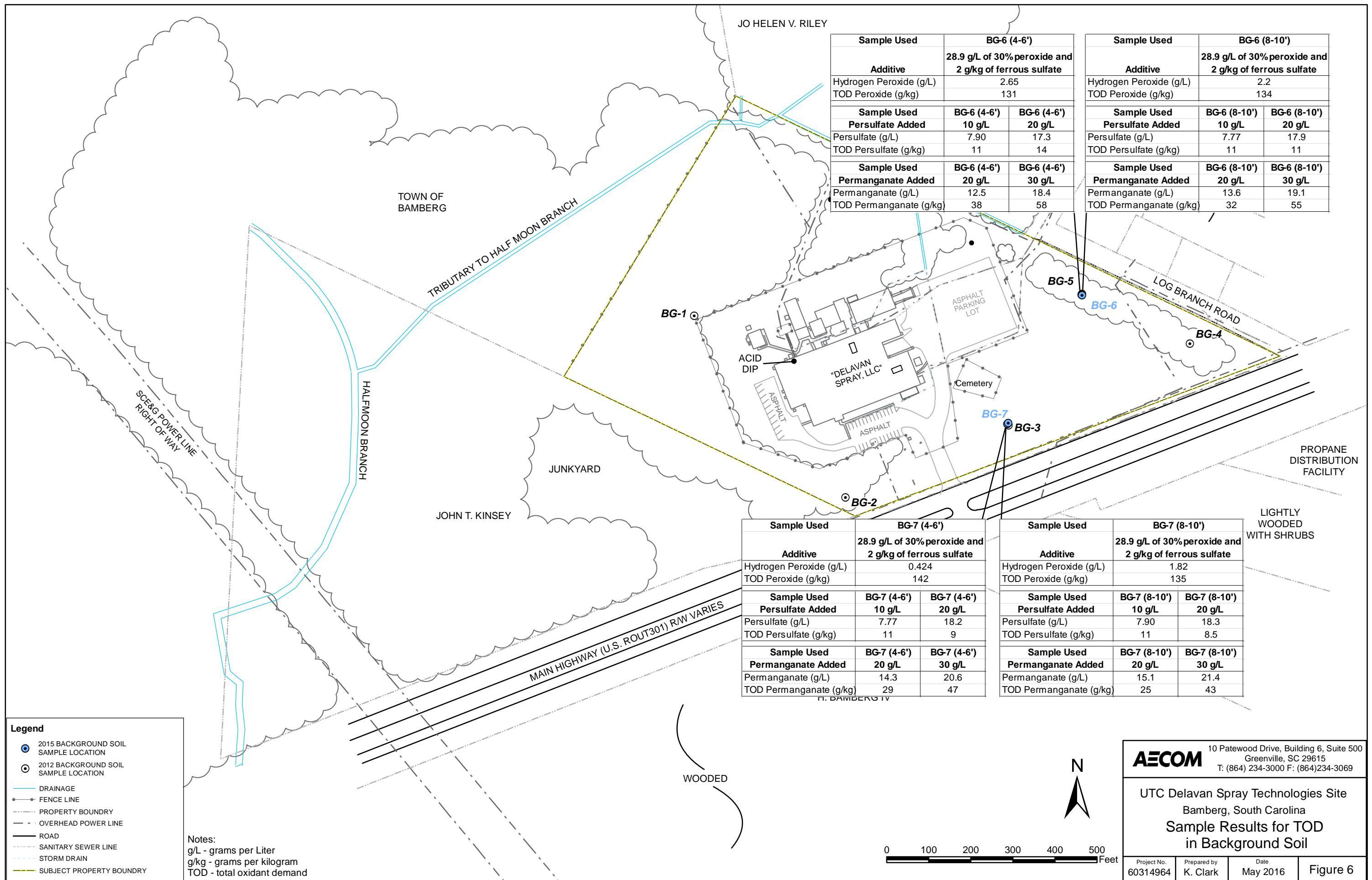
U.S.G.S. QUADRANGLE MAP
BAMBERG, SC 1979 (PHOTO REVISED 1987)
QUADRANGLE
7.5 MINUTE SERIES (TOPOGRAPHIC)

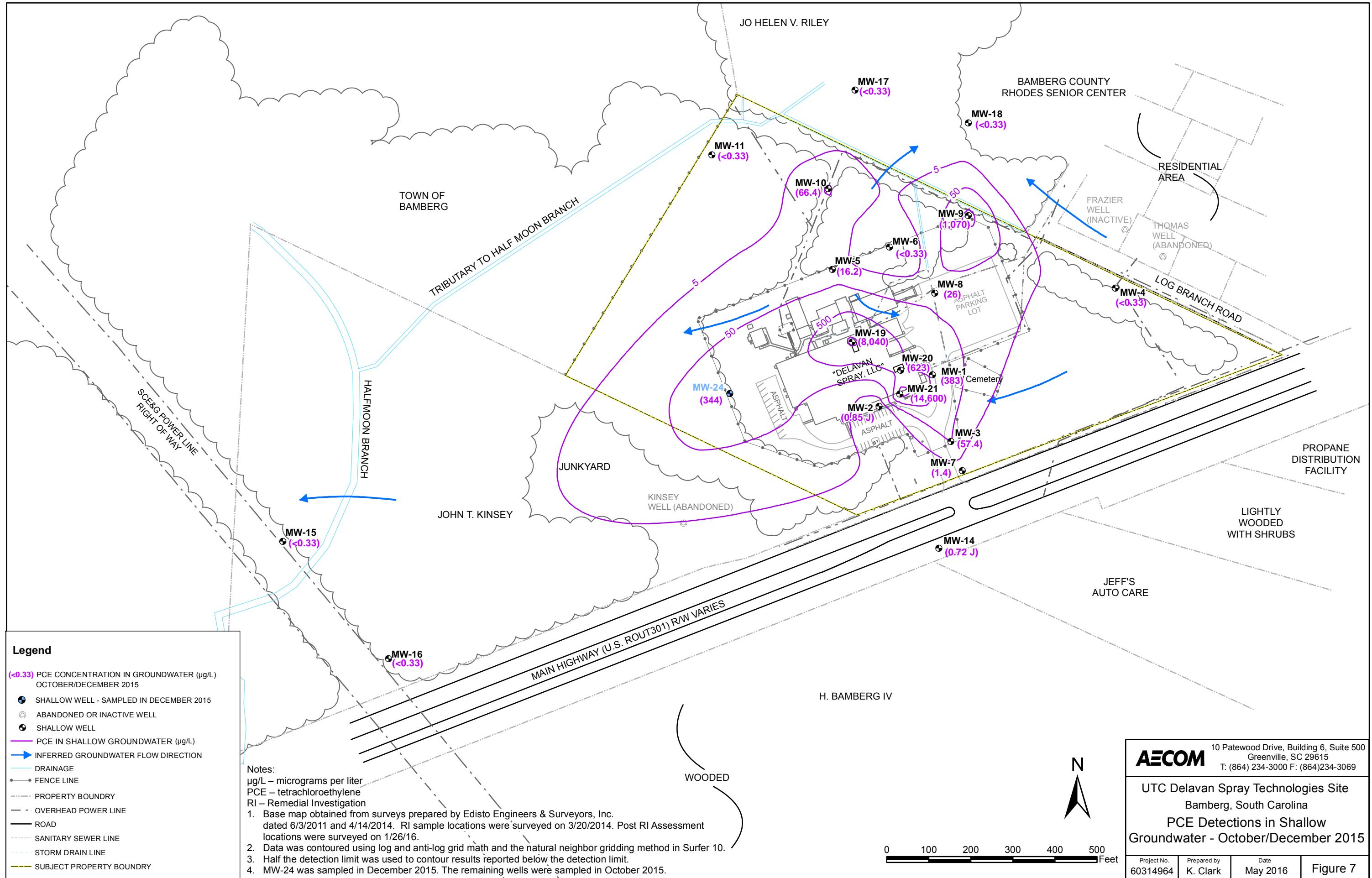

AECOM

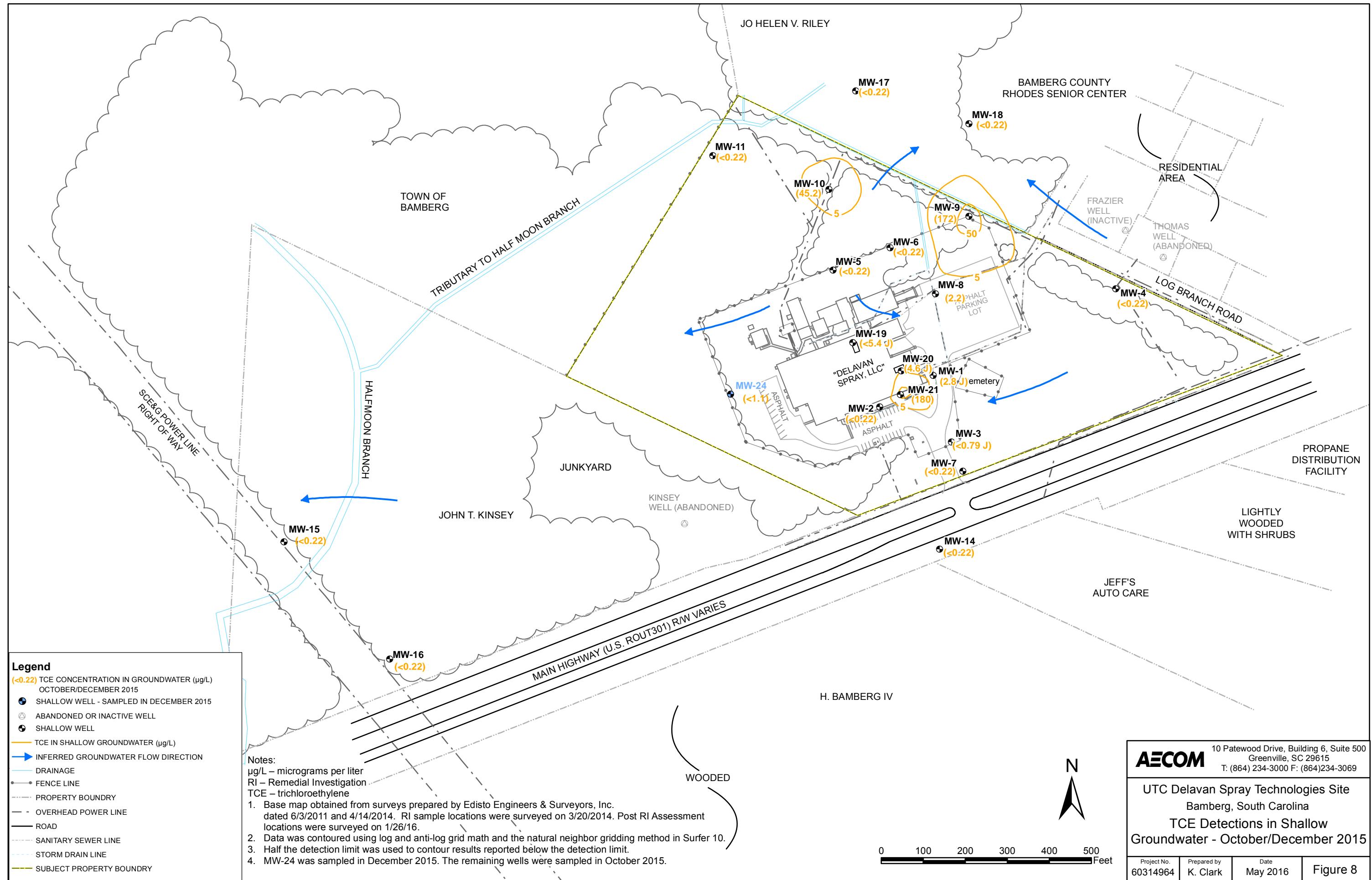

10 Patewood Drive, Building 6, Suite 500
Greenville, SC 29615
T: (864) 234-3000 F: (864) 234-3069

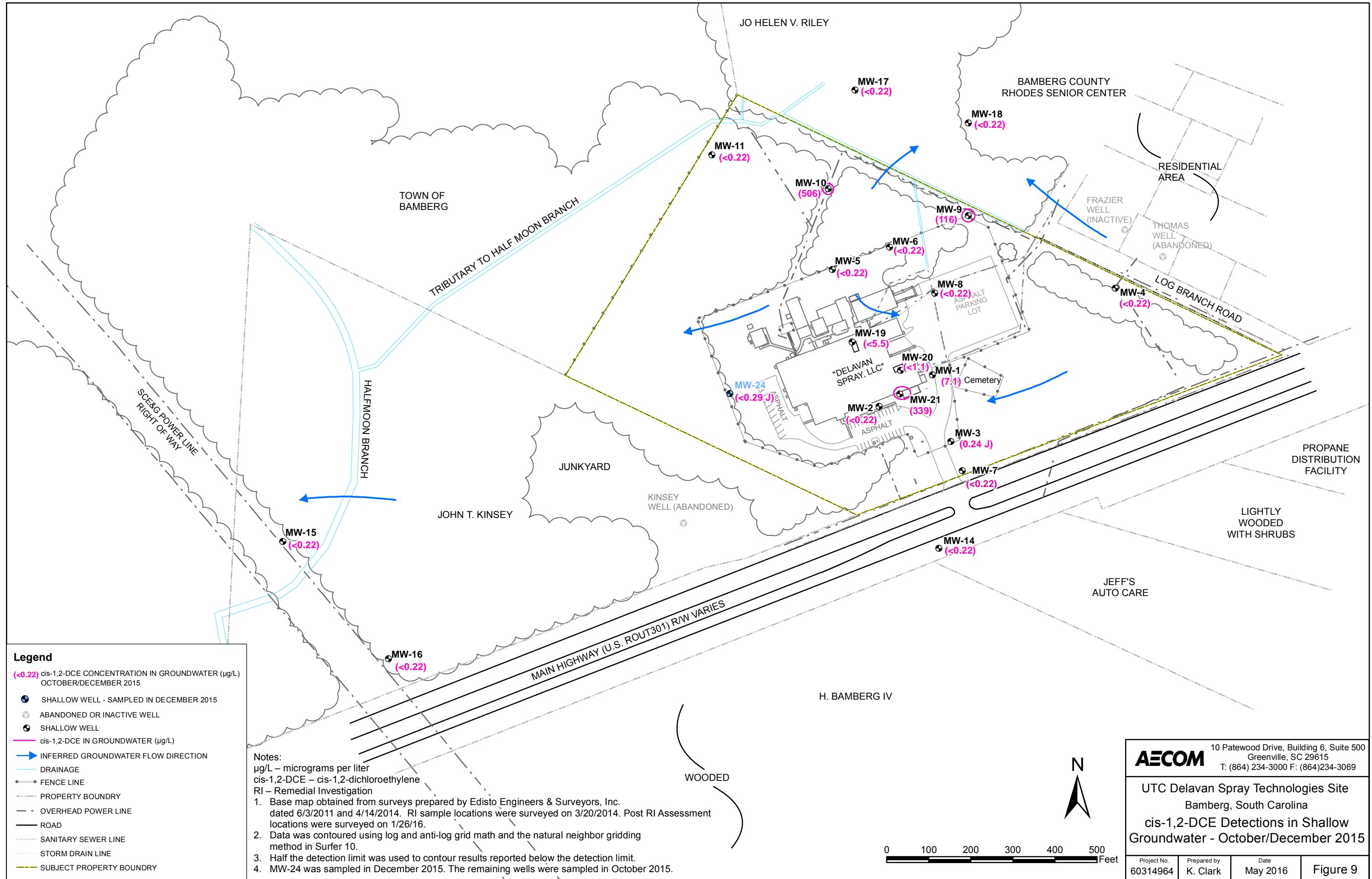

UTC Delavan Spray Technologies Site
Bamberg, South Carolina

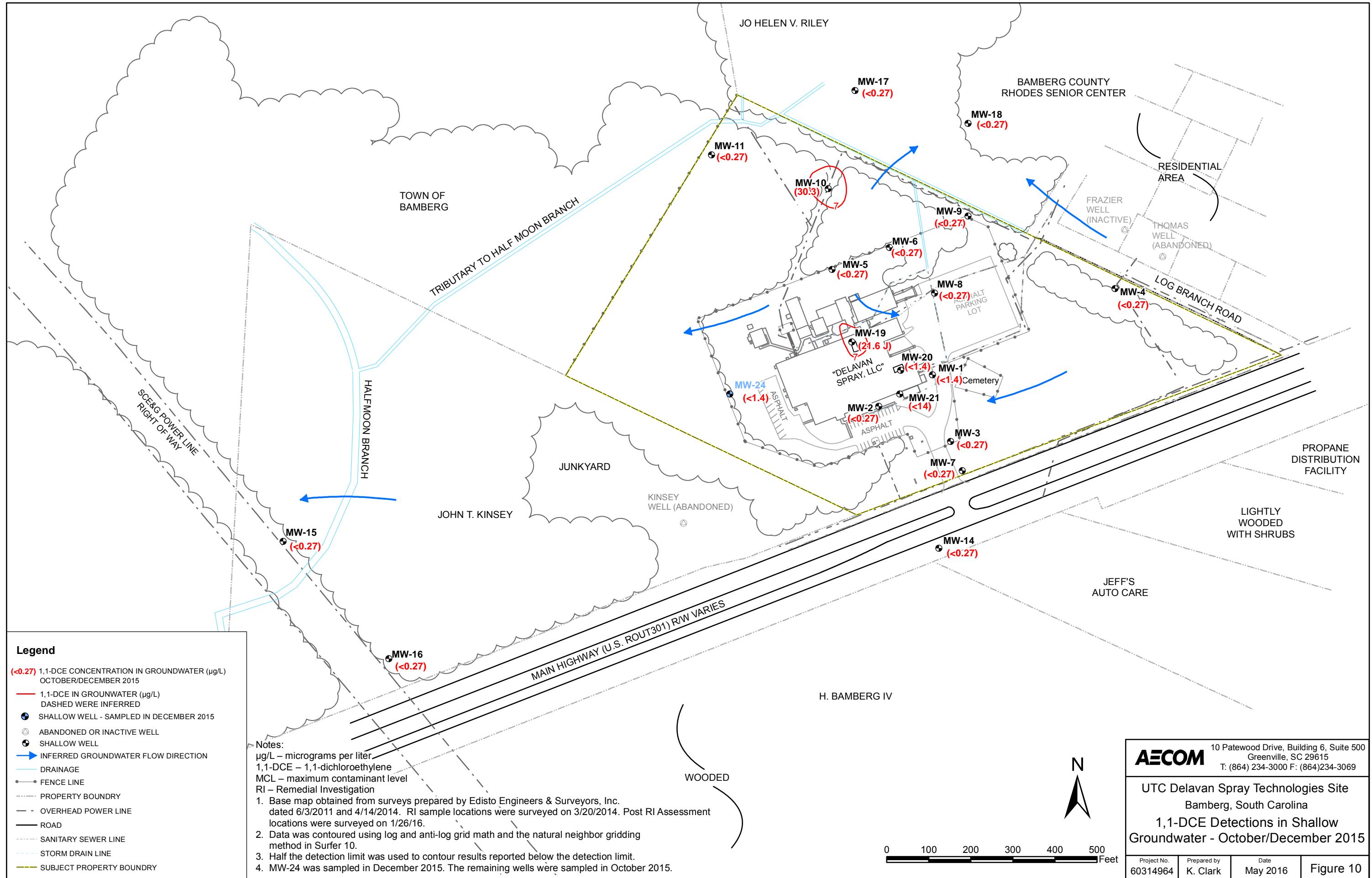

Site Location Map

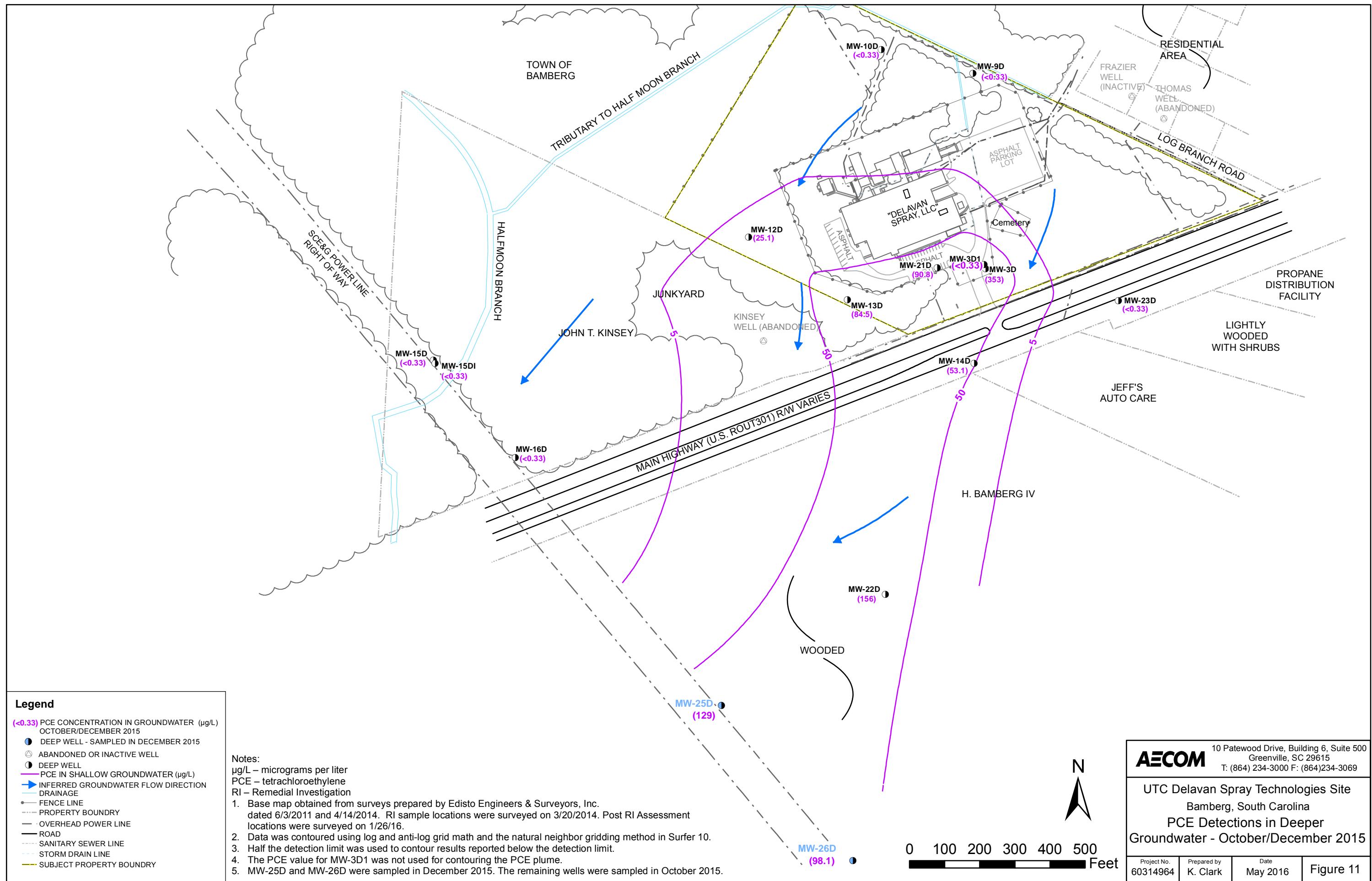

Project No. 60314964	Prepared by K. Clark	Date May 2016	Figure 1
-------------------------	-------------------------	------------------	----------

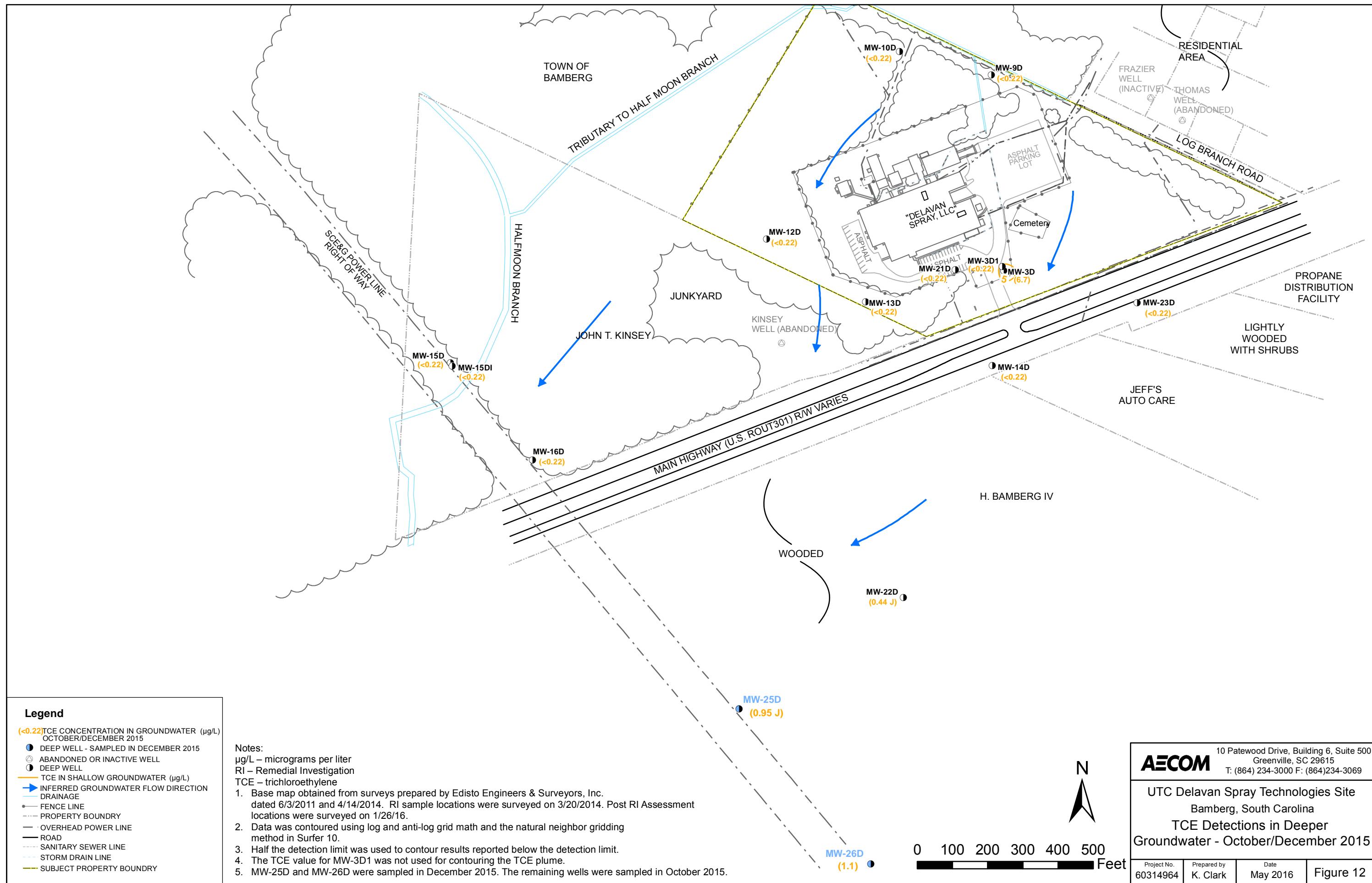


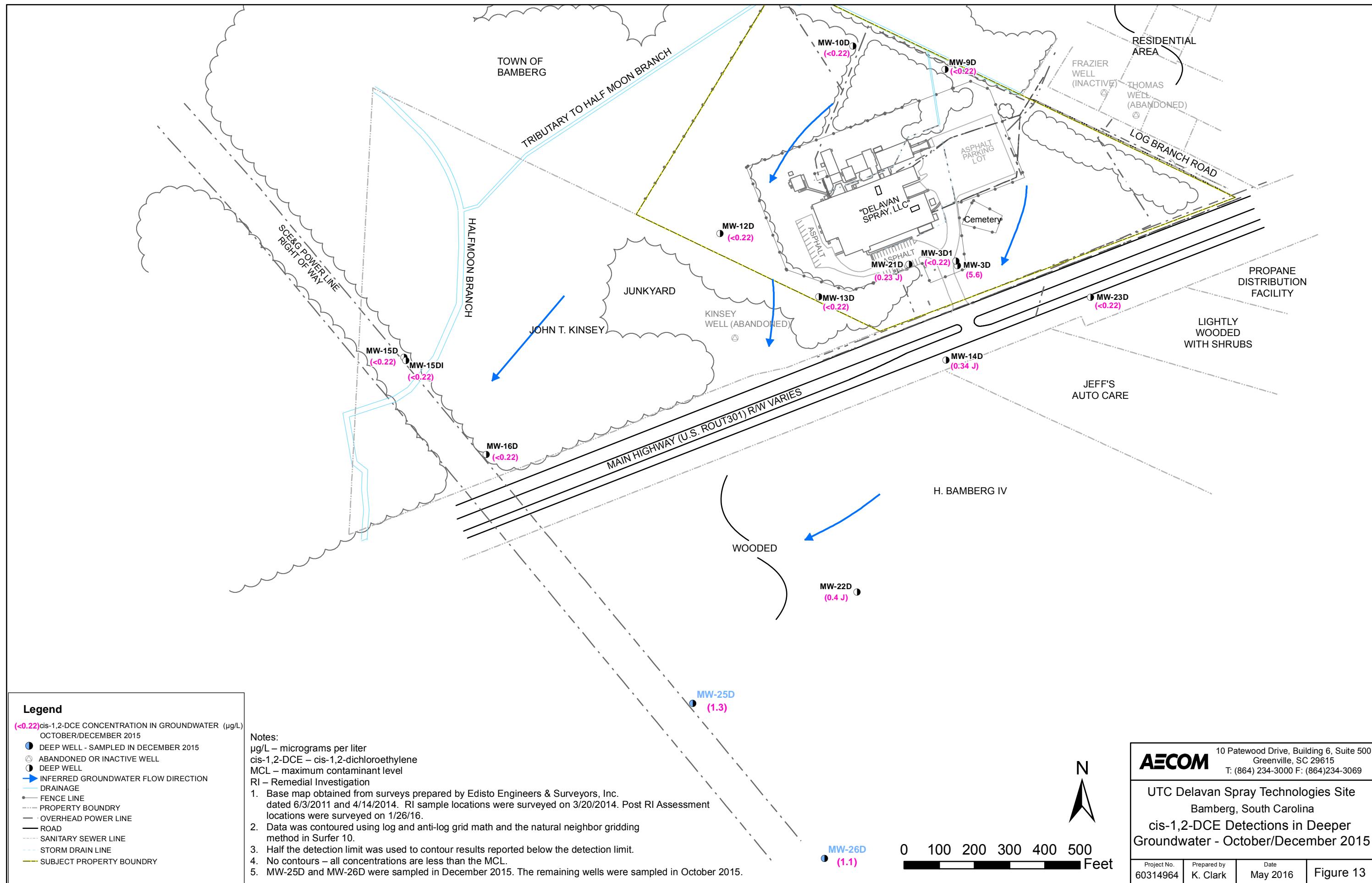


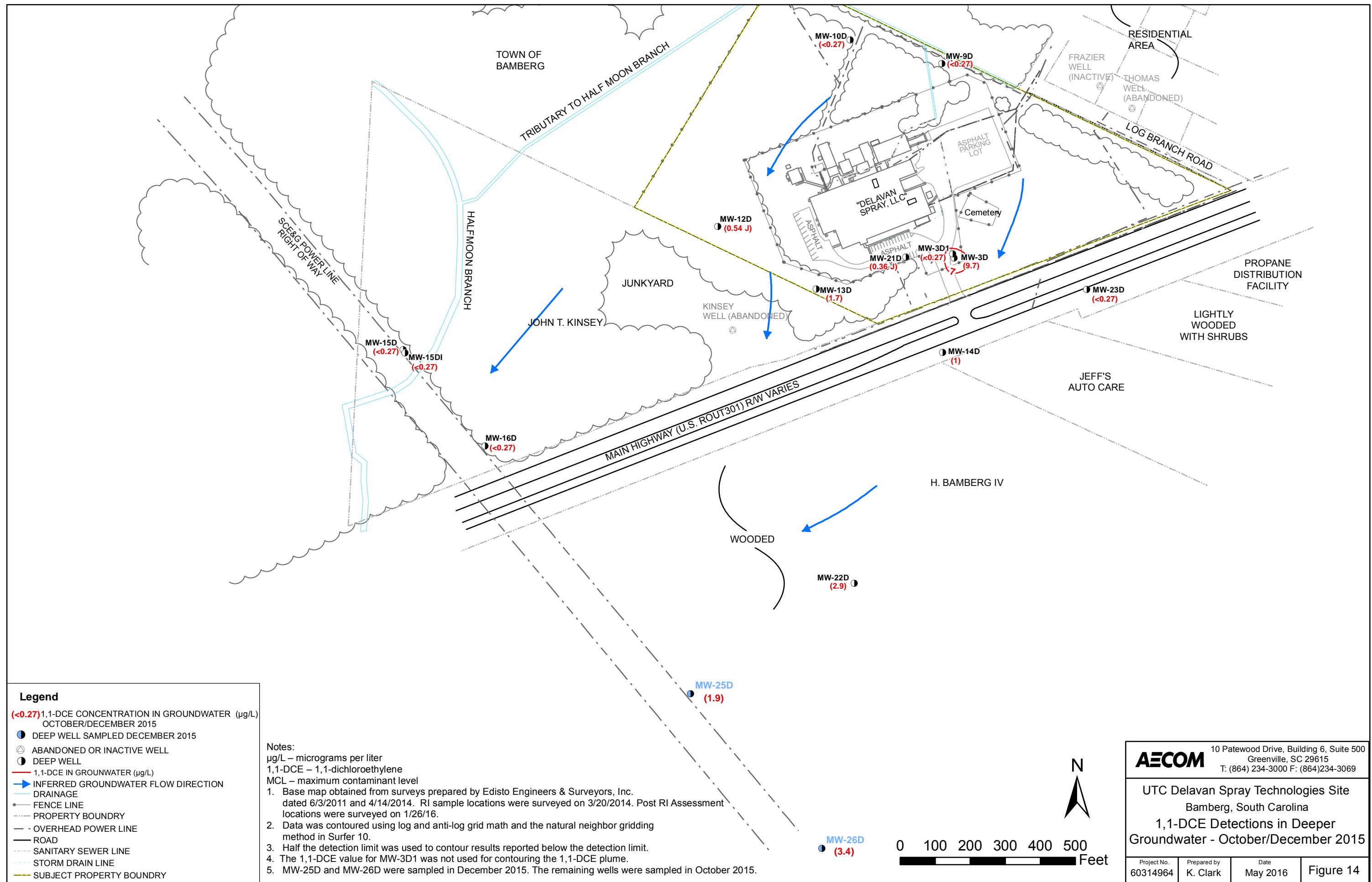












TABLES

Table 1
Summary of New Monitoring Well Construction Details
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Well Number	Northing ¹	Easting ¹	Date Installed	Installed By	Ground Surface Elevation ² (ft MSL)	Top of Casing Elevation ² (ft MSL)	Stick-up Height (ft)	Well Diameter (Inches)	Casing Type	Total Depth (ft bgs)	Classification	Surface Casing Depth (ft bgs)	Screen Interval (ft bgs)
MW-24	527332.95	1985487.59	12/3/2015	AECOM	148.52	147.85	-0.67	2	PVC	21	Shallow	NA	6-21
MW-25D	525988.09	1985257.31	12/2/2015	AECOM	139.30	139.21	-0.09	2	PVC	62	Deep	NA ³	52-62
MW-26D	525547.18	1985631.39	12/1/2015	AECOM	143.83	143.64	-0.19	2	PVC	48	Deep	NA ³	38-48
DPT-58	527478.86	1985775.68	12/1/2015	AECOM	148.31	148.02	-0.29	1	PVC	16	Shallow	NA	5-15
DPT-59	527457.60	1985752.80	12/2/2015	AECOM	148.53	148.24	-0.29	1	PVC	15	Shallow	NA	5-15
DPT-60	527453.36	1985770.99	12/2/2015	AECOM	148.53	148.31	-0.22	1	PVC	15	Shallow	NA	5-15
DPT-61	527446.95	1985784.57	12/2/2015	AECOM	148.44	147.99	-0.45	1	PVC	15	Shallow	NA	5-15

Notes:

bgs - below ground surface

ft - feet

ft MSL - feet above mean sea level

NA - not applicable

¹ - Horizontal coordinates are referenced to the State Plane Coordinate System and the North American Datum of 1983 (NAD 83).

² - Vertical locations are referenced to the North American Vertical Datum of 1988 (NAVD 88).

³ - The outer geoprobe casing was used as a temporary surface casing during advancement of the borehole and well installation.

Table 2
Summary of Slug Test Results
Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Well ID	Test Name	K (ft/day)	Use Result?	Comments
MW-1	mw1-out1	0.259	Yes	
MW-1	mw1-out2	0.175	Yes	
MW-5	mw5-out1	0.436	Yes	
MW-5	mw5-out2	0.414	Yes	
MW-21	mw21-in1	2.93	No	uncertain of test quality -waves in early data
MW-21	mw21-in2	0.667	Yes	
MW-21	mw21-out1	0.469	Yes	
MW-21	mw21-out2	0.254	Yes	
Minimum		0.175		
Maximum		0.667		
Shallow Well Geometric Mean		0.350		
MW-1 Geometric Mean		0.213		
MW-5 Geometric Mean		0.425		
MW-21 Geometric Mean		0.430		
Well ID	Test Name	K (ft/day)	Use Result?	Comments
MW-21D	mw21d-in1	72.5	Yes	rapid response - not many points to fit
MW-21D	mw21d-in2	67.2	Yes	waves in early data and response very fast and possibly missed most of it - not many points to fit
MW-21D	mw21d-in3	74.0	Yes	waves in early data and response very fast and missed most of it - not many points to fit
MW-21D	mw21d-out1	97.2	Yes	response is very rapid and test missed the peak - not many points to fit
MW-21D	mw21d-out2	121	Yes	response is very rapid - not many points to fit
MW-21D	mw21d-out3	495	No	Do not use result - waves in data throughout test
MW-22D	mw22d-out3	21.2	Yes	Rapid response - some waves in early data
MW-22D	mw22d-in1	23.0	Yes	Rapid response - some waves in early data
MW-22D	mw22d-in2	24.6	Yes	Rapid response - some waves in early data
MW-22D	mw22d-in3	38.6	Yes	Rapid response
MW-22D	mw22d-out1	38.3	Yes	Rapid response
MW-22D	mw22d-out2	39.9	Yes	Rapid response
Minimum		21.2		
Maximum		121		
Deeper Wells Geometric Mean		47.8		
MW-21D Geometric Mean		84.2		
MW-22D Geometric Mean		29.8		

Table 3
Analytical Results for Soil Samples - VOCs
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample ID Laboratory ID Date Collected	MCL-Based SSL	DPT-58-5.5 FA29626-2 12/01/15	DPT-58-11 FA29626-3 12/01/15	DPT-59-3 FA29657-2 12/02/15	DPT-59-10 FA29657-3 12/02/15
Volatile Organic Compounds by USEPA Method 8260B (mg/kg)					
1,1,1-Trichloroethane	0.07	< 0.00092	< 0.00092	< 0.0011	< 0.0013
1,1,2,2-Tetrachloroethane	—	< 0.00078	< 0.00078	< 0.00092	< 0.0011
1,1,2-Trichloroethane	0.0016	< 0.00088	< 0.00089	< 0.001	< 0.0012
1,1-Dichloroethane	—	< 0.0007	< 0.0007	< 0.00083	< 0.00095
1,1-Dichloroethylene	0.0025	< 0.00093	< 0.00093	< 0.0011	< 0.0013
1,2-Dichloroethane	0.0014	< 0.0007	< 0.0007	< 0.00083	< 0.00095
1,2-Dichloropropane	0.0017	< 0.0007	< 0.0007	< 0.00083	< 0.00095
2-Butanone (MEK)	—	< 0.006	< 0.006	< 0.007	< 0.0081
2-Hexanone	—	< 0.0057	< 0.0057	< 0.0067	< 0.0078
4-Methyl-2-pentanone	—	< 0.0038	< 0.0038	< 0.0044	< 0.0051
Acetone	—	0.0931	< 0.011	0.019 J//	< 0.014
Benzene	0.0026	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Bromodichloromethane	0.022	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Bromoform	0.021	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Carbon disulfide	—	< 0.001	< 0.001	< 0.0012	< 0.0014
Carbon tetrachloride	0.0019	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Chlorobenzene	0.068	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Chloroethane	—	< 0.0014	< 0.0014	< 0.0017	< 0.0019
Chloroform	0.022	< 0.0007	< 0.0007	< 0.00083	< 0.00095
cis-1,2-Dichloroethylene	0.021	0.0054	0.00077 J//	< 0.00083	< 0.00095
cis-1,3-Dichloropropene	—	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Dibromochloromethane	0.021	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Ethylbenzene	0.78	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Methyl bromide	—	< 0.0015	< 0.0015	< 0.0018	< 0.0021
Methyl chloride	—	< 0.0014	< 0.0014	< 0.0017	< 0.0019
Methylene chloride	0.0013	< 0.0028	< 0.0028	< 0.0033	< 0.0038
Styrene	0.11	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Tetrachloroethylene	0.0023	0.0071	0.0012 J//	0.0213	0.0024 J//
Toluene	0.69	< 0.0007	< 0.0007	< 0.00083	< 0.00095
trans-1,2-Dichloroethylene	0.031	< 0.0007	< 0.0007	< 0.00083	< 0.00095
trans-1,3-Dichloropropene	—	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Trichloroethylene	0.0018	< 0.0007	< 0.0007	< 0.00083	< 0.00095
Vinyl chloride	0.00069	< 0.0011	< 0.0011	< 0.0013	< 0.0015
Xylene (total)	9.8	< 0.0015	< 0.0015	< 0.0017	< 0.002

Table 3
Analytical Results for Soil Samples - VOCs
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample ID Laboratory ID Date Collected	MCL-Based SSL	DPT-60-1 FA29657-4 12/02/15	DPT-60-8 FA29657-6 12/02/15	DPT-61-6 FA29657-7 12/02/15	DPT-61-8 FA29657-8 12/02/15
Volatile Organic Compounds by USEPA Method 8260B (mg/kg)					
1,1,1-Trichloroethane	0.07	< 0.00097	< 0.0011	0.0014	J//
1,1,2,2-Tetrachloroethane	—	< 0.00082	< 0.0009	< 0.00099	< 0.001
1,1,2-Trichloroethane	0.0016	< 0.00093	< 0.001	< 0.0011	0.0017
1,1-Dichloroethane	—	< 0.00074	< 0.00081	< 0.00089	< 0.00092
1,1-Dichloroethylene	0.0025	< 0.00098	< 0.0011	< 0.0012	< 0.0012
1,2-Dichloroethane	0.0014	< 0.00074	< 0.00081	< 0.00089	< 0.00092
1,2-Dichloropropane	0.0017	< 0.00074	< 0.00081	< 0.00089	< 0.00092
2-Butanone (MEK)	—	< 0.0063	< 0.0069	< 0.0076	< 0.0078
2-Hexanone	—	< 0.006	< 0.0066	< 0.0073	< 0.0075
4-Methyl-2-pentanone	—	< 0.004	< 0.0043	< 0.0048	< 0.0049
Acetone	—	< 0.011	< 0.012	< 0.013	< 0.014
Benzene	0.0026	< 0.00074	< 0.00081	< 0.00089	< 0.00092
Bromodichloromethane	0.022	< 0.00074	< 0.00081	< 0.00089	< 0.00092
Bromoform	0.021	< 0.00074	< 0.00081	< 0.00089	< 0.00092
Carbon disulfide	—	< 0.0011	< 0.0012	< 0.0013	< 0.0014
Carbon tetrachloride	0.0019	< 0.00074	< 0.00081	< 0.00089	< 0.00092
Chlorobenzene	0.068	< 0.00074	< 0.00081	< 0.00089	< 0.00092
Chloroethane	—	< 0.0015	< 0.0016	< 0.0018	< 0.0018
Chloroform	0.022	< 0.00074	< 0.00081	< 0.00089	< 0.00092
cis-1,2-Dichloroethylene	0.021	< 0.00074	0.001	J//	< 0.00089
cis-1,3-Dichloropropene	—	< 0.00074	< 0.00081	< 0.00089	< 0.00092
Dibromochloromethane	0.021	< 0.00074	< 0.00081	< 0.00089	< 0.00092
Ethylbenzene	0.78	< 0.00074	< 0.00081	< 0.00089	< 0.00092
Methyl bromide	—	< 0.0016	< 0.0018	< 0.0019	< 0.002
Methyl chloride	—	< 0.0015	< 0.0016	< 0.0018	< 0.0018
Methylene chloride	0.0013	< 0.003	< 0.0032	< 0.0036	< 0.0037
Styrene	0.11	< 0.00074	< 0.00081	< 0.00089	< 0.00092
Tetrachloroethylene	0.0023	0.0759	0.0709	0.343	0.178
Toluene	0.69	< 0.00074	< 0.00081	< 0.00089	< 0.00092
trans-1,2-Dichloroethylene	0.031	< 0.00074	< 0.00081	< 0.00089	< 0.00092
trans-1,3-Dichloropropene	—	< 0.00074	< 0.00081	< 0.00089	< 0.00092
Trichloroethylene	0.0018	< 0.00074	< 0.00081	< 0.00089	0.001
Vinyl chloride	0.00069	< 0.0012	< 0.0013	< 0.0014	< 0.0015
Xylene (total)	9.8	< 0.0015	< 0.0017	< 0.0019	< 0.0019

Notes:

mg/kg - milligrams per kilogram (parts per million)

MCL-Based SSL is the maximum contaminant level (MCL)-based Soil Screening Level (SSL) from the USEPA RSL

Table (November 2015). SSL values are based on a dilution attenuation factor of 1.

Bold font and shading indicate the concentration is detected.

Italics indicates the concentration exceeds the MCL-Based SSL.

— - Indicates No Standard (for screening criteria) or Not Analyzed (for analytical data).

See Table 9 for explanation of data qualifiers.

Table 4
Analytical Results for Soil Samples - TOD
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample Used	BG-6-6	BG-6-10	BG-7-6	BG-7-10	none
Lab Package ID	SC15664-05	SC15664-06	SC15664-07	SC15664-08	SC15664-09
Sample Sample ID	4-01 A.3	4-02 A.3	4-03 A.3	4-04 A.3	Control A.3
Additive 28.9 g/L of 30% peroxide and 2 g/kg of ferrous sulfate					
Hydrogen Peroxide (g/L)	2.65	2.20	0.424	1.82	0.055
TOD Peroxide (g/kg)	131	134	142	135	144

Sample Used	BG-6-6	BG-6-6	BG-6-10	BG-6-10	BG-7-6	BG-7-6	BG-7-10	BG-7-10	none
Lab Package ID	SC15664-10	SC15664-11	SC15664-12	SC15664-13	SC15664-14	SC15664-15	SC15664-16	SC15664-17	SC15664-18
Sample Sample ID	4-01 A.1	4-01 A.2	4-02 A.1	4-02 A.2	4-03 A.1	4-03 A.2	4-04 A.1	4-04 A.2	Control A.2
Persulfate Added	10 g/L	20 g/L	20 g/L						
Persulfate (g/L)	7.90	17.3	7.77	17.9	7.77	18.2	7.90	18.3	18.4
TOD Persulfate (g/kg)	11	14	11	11	11	9.0	11	8.5	8.0

Sample Used	BG-6-6	BG-6-6	BG-6-10	BG-6-10	BG-7-6	BG-7-6	BG-7-10	BG-7-10	none
Lab Package ID	SC15664-19	SC15664-20	SC15664-21	SC15664-22	SC15664-23	SC15664-24	SC15664-25	SC15664-26	SC15664-27
Sample Sample ID	4-01 B.1	4-01 B.2	4-02 B.1	4-02 B.2	4-03 B.1	4-03 B.2	4-04 B.1	4-04 B.2	Control B.2
Permanganate Added	20 g/L	30 g/L	30 g/L						
Permanganate (g/L)	12.5	18.4	13.6	19.1	14.3	20.6	15.1	21.4	30.8
TOD Permanganate (g/kg)	38	58	32	55	29	47	25	43	0

Notes:

g/L - grams per Liter

g/kg - grams per kilogram

TOD - total oxidant demand

Table 5
Analytical Results for Soil Samples - QA/QC
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample ID	DPT-60-8-D
Laboratory ID	FA29657-5
Date Collected	12/02/15
Volatile Organic Compounds by USEPA Method 8260B (µg/L)	
1,1,1-Trichloroethane	< 0.26
1,1,2,2-Tetrachloroethane	< 0.22
1,1,2-Trichloroethane	< 0.31
1,1-Dichloroethane	< 0.2
1,1-Dichloroethylene	< 0.27
1,2-Dichloroethane	< 0.2
1,2-Dichloropropane	< 0.25
2-Butanone (MEK)	< 1.2
2-Hexanone	< 2
4-Methyl-2-pentanone (MIBK)	< 1
Acetone	< 10
Benzene	< 0.2
Bromodichloromethane	< 0.22
Bromoform	< 0.32
Carbon Disulfide	< 0.29
Carbon Tetrachloride	< 0.28
Chlorobenzene	< 0.2
Chloroethane	< 0.5
Chloroform	< 0.3
cis-1,2-Dichloroethylene	< 0.22
cis-1,3-Dichloropropene	< 0.25
Dibromochloromethane	< 0.2
Ethylbenzene	< 0.2
Methyl Bromide	< 0.5
Methyl Chloride	< 0.5
Methylene Chloride	< 2
Styrene	< 0.28
Tetrachloroethylene	< 0.33
Toluene	< 0.4
trans-1,2-Dichloroethylene	< 0.21
trans-1,3-Dichloropropene	< 0.26
Trichloroethylene	< 0.22
Vinyl Chloride	< 0.25
Xylene (total)	< 0.51

Notes:

-D - Indicates a rinsate sample.
 µg/L - micrograms per liter (parts per billion)

Table 5
Analytical Results for Soil Samples - QA/QC
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample ID	DPT-58-5.5-C	DPT-59-3-C
Laboratory ID	FA29626-1	FA29657-1
Date Collected	12/01/15	12/02/15
Volatile Organic Compounds by USEPA Method 8260B (mg/kg)		
1,1,1-Trichloroethane	< 0.0013	< 0.0013
1,1,2,2-Tetrachloroethane	< 0.0011	< 0.0011
1,1,2-Trichloroethane	< 0.0013	< 0.0013
1,1-Dichloroethane	< 0.001	< 0.001
1,1-Dichloroethylene	< 0.0013	< 0.0013
1,2-Dichloroethane	< 0.001	< 0.001
1,2-Dichloropropane	< 0.001	< 0.001
2-Butanone (MEK)	< 0.0085	< 0.0085
2-Hexanone	< 0.0082	< 0.0082
4-Methyl-2-pentanone (MIBK)	< 0.0054	< 0.0054
Acetone	< 0.015	< 0.015
Benzene	< 0.001	< 0.001
Bromodichloromethane	< 0.001	< 0.001
Bromoform	< 0.001	< 0.001
Carbon Disulfide	< 0.0015	< 0.0015
Carbon Tetrachloride	< 0.001	< 0.001
Chlorobenzene	< 0.001	< 0.001
Chloroethane	< 0.002	< 0.002
Chloroform	< 0.001	< 0.001
cis-1,2-Dichloroethylene	< 0.001	< 0.001
cis-1,3-Dichloropropene	< 0.001	< 0.001
Dibromochloromethane	< 0.001	< 0.001
Ethylbenzene	< 0.001	< 0.001
Methyl Bromide	< 0.0022	< 0.0022
Methyl Chloride	< 0.002	< 0.002
Methylene Chloride	< 0.004	< 0.004
Styrene	< 0.001	< 0.001
Tetrachloroethylene	< 0.0016	< 0.0016
Toluene	< 0.001	< 0.001
trans-1,2-Dichloroethylene	< 0.001	< 0.001
trans-1,3-Dichloropropene	< 0.001	< 0.001
Trichloroethylene	< 0.001	< 0.001
Vinyl Chloride	< 0.0016	< 0.0016
Xylene (total)	< 0.0021	< 0.0021

Notes:

-C - Indicates a soil trip blank sample.

mg/kg - milligrams per kilogram (parts per million)

Table 5
Analytical Results for Soil Samples - QA/QC
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample ID	DPT-61-8	DPT-61-8-A	Relative Percent Difference
Laboratory ID	FA29657-8	FA29657-9	
Date Collected	12/02/15	12/02/15	
Volatile Organic Compounds by USEPA Method 8260B (mg/kg)			
1,1,1-Trichloroethane	0.0025 J//	0.0012 J//	NC
1,1,2,2-Tetrachloroethane	< 0.001	< 0.00097	NC
1,1,2-Trichloroethane	0.0017 J//	0.0014 J//	NC
1,1-Dichloroethane	< 0.00092	< 0.00087	NC
1,1-Dichloroethylene	< 0.0012	< 0.0012	NC
1,2-Dichloroethane	< 0.00092	< 0.00087	NC
1,2-Dichloropropane	< 0.00092	< 0.00087	NC
2-Butanone (MEK)	< 0.0078	< 0.0074	NC
2-Hexanone	< 0.0075	< 0.0071	NC
4-Methyl-2-pentanone (MIBK)	< 0.0049	< 0.0047	NC
Acetone	< 0.014	< 0.013	NC
Benzene	< 0.00092	< 0.00087	NC
Bromodichloromethane	< 0.00092	< 0.00087	NC
Bromoform	< 0.00092	< 0.00087	NC
Carbon Disulfide	< 0.0014	< 0.0013	NC
Carbon Tetrachloride	< 0.00092	< 0.00087	NC
Chlorobenzene	< 0.00092	< 0.00087	NC
Chloroethane	< 0.0018	< 0.0017	NC
Chloroform	< 0.00092	< 0.00087	NC
cis-1,2-Dichloroethylene	0.0014 J//	0.0012 J//	NC
cis-1,3-Dichloropropene	< 0.00092	< 0.00087	NC
Dibromochloromethane	< 0.00092	< 0.00087	NC
Ethylbenzene	< 0.00092	< 0.00087	NC
Methyl Bromide	< 0.002	< 0.0019	NC
Methyl Chloride	< 0.0018	< 0.0017	NC
Methylene Chloride	< 0.0037	< 0.0035	NC
Styrene	< 0.00092	< 0.00087	NC
Tetrachloroethylene	0.178 J//	0.699 /M/m	NC
Toluene	< 0.00092	< 0.00087	NC
trans-1,2-Dichloroethylene	< 0.00092	< 0.00087	NC
trans-1,3-Dichloropropene	< 0.00092	< 0.00087	NC
Trichloroethylene	0.001 J//	< 0.00087	NC
Vinyl Chloride	< 0.0015	< 0.0014	NC
Xylene (total)	< 0.0019	< 0.0018	NC

Notes:

- A - Indicates a field duplicate sample.
- mg/kg - milligrams per kilogram (parts per million)
- NC - Not Calculated
- RPD - Relative Percent Difference

See Table 9 for explanation of data qualifiers.

Table 6
Analytical Results for Groundwater Samples - VOCs
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample ID Laboratory ID Date Collected	USEPA MCL	MW-24 FA29765-4 12/04/15	MW-25D FA29765-2 12/04/15	MW-26D FA29765-1 12/04/15
Volatile Organic Compounds by USEPA Method 8260B (µg/L)				
1,1,1-Trichloroethane	200	< 1.3	< 0.26	< 0.26
1,1,2,2-Tetrachloroethane	—	< 1.1	< 0.22	< 0.22
1,1,2-Trichloroethane	5	< 1.6	< 0.31	< 0.31
1,1-Dichloroethane	—	< 1	< 0.2	< 0.2
1,1-Dichloroethylene	7	< 1.4	3.4	1.9
1,2-Dichloroethane	5	< 1	< 0.2	< 0.2
1,2-Dichloropropane	5	< 1.3	< 0.25	< 0.25
2-Butanone (MEK)	—	< 5.8	< 1.2	< 1.2
2-Hexanone	—	< 10	< 2	< 2
4-Methyl-2-pentanone (MIBK)	—	< 5	< 1	< 1
Acetone	—	< 50	< 10	< 10
Benzene	5	< 1	< 0.2	< 0.2
Bromodichloromethane	80 ¹	< 1.1	< 0.22	< 0.22
Bromoform	80 ¹	< 1.6	< 0.32	< 0.32
Carbon Disulfide	—	< 1.5	< 0.29	< 0.29
Carbon Tetrachloride	5	< 1.4	< 0.28	< 0.28
Chlorobenzene	100	< 1	< 0.2	< 0.2
Chloroethane	—	< 2.5	< 0.5	< 0.5
Chloroform	80 ¹	< 1.5	< 0.3	< 0.3
cis-1,2-Dichloroethylene	70	2.9	J//	1.1
cis-1,3-Dichloropropene	—	< 1.3	< 0.25	< 0.25
Dibromochloromethane	80 ¹	< 1	< 0.2	< 0.2
Ethylbenzene	700	< 1	< 0.2	< 0.2
Methyl Bromide	—	< 2.5	< 0.5	< 0.5
Methyl Chloride	—	< 2.5	< 0.5	< 0.5
Methylene Chloride	5	< 10	< 2	< 2
Styrene	100	< 1.4	< 0.28	< 0.28
Tetrachloroethylene	5	344	129	98.1
Toluene	1,000	< 2	< 0.4	< 0.4
trans-1,2-Dichloroethylene	100	< 1	< 0.21	< 0.21
trans-1,3-Dichloropropene	—	< 1.3	< 0.26	< 0.26
Trichloroethylene	5	< 1.1	0.95	J//
Vinyl Chloride	2	< 1.3	< 0.25	< 0.25
Xylene (total)	10,000	< 2.6	< 0.51	< 0.51

Notes:

µg/L - micrograms per liter (parts per billion)

USEPA MCL - United States Environmental Protection Agency Maximum Contaminant Level (April, 2012).

¹ 1998 Final Rule for Disinfectants and Disinfection By-products. The total for trihalomethanes (THM) is 80 ug/L.

— - Indicates No Standard (for screening criteria) or Not Analyzed (for analytical data).

Bold font and shading indicate the concentration is detected.

Bold outline indicates the concentration exceeds the MCL.

South Carolina Department of Health and Environmental Control (SCDHEC) R.61-68 Water Classifications and Standards (June 22, 2012) were also identified for the list of detected chemicals in groundwater. In each case, however, they were the same values as the USEPA MCLs.

See Table 9 for explanation of data qualifiers.

Table 7
Analytical Results for Groundwater Samples - QA/QC
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample ID	TRIP BLANK
Laboratory ID	FA29765-7
Date Collected	12/04/15
Volatile Organic Compounds by USEPA Method 8260B (µg/L)	
1,1,1-Trichloroethane	< 0.26
1,1,2,2-Tetrachloroethane	< 0.22
1,1,2-Trichloroethane	< 0.31
1,1-Dichloroethane	< 0.2
1,1-Dichloroethylene	< 0.27
1,2-Dichloroethane	< 0.2
1,2-Dichloropropane	< 0.25
2-Butanone (MEK)	< 1.2
2-Hexanone	< 2
4-Methyl-2-pentanone (MIBK)	< 1
Acetone	< 10
Benzene	< 0.2
Bromodichloromethane	< 0.22
Bromoform	< 0.32
Carbon Disulfide	< 0.29
Carbon Tetrachloride	< 0.28
Chlorobenzene	< 0.2
Chloroethane	< 0.5
Chloroform	< 0.3
cis-1,2-Dichloroethylene	< 0.22
cis-1,3-Dichloropropene	< 0.25
Dibromochloromethane	< 0.2
Ethylbenzene	< 0.2
Methyl Bromide	< 0.5
Methyl Chloride	< 0.5
Methylene Chloride	5.4
Styrene	< 0.28
Tetrachloroethylene	< 0.33
Toluene	< 0.4
trans-1,2-Dichloroethylene	< 0.21
trans-1,3-Dichloropropene	< 0.26
Trichloroethylene	< 0.22
Vinyl Chloride	< 0.25
Xylene (total)	< 0.51

Notes:

-C - Indicates a trip blank.

µg/L - micrograms per liter (parts per billion)

Bold font and shading indicate the concentration is detected.

Table 7
Analytical Results for Groundwater Samples - QA/QC
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample ID Laboratory ID Date Collected	MW-25D FA29765-2 12/04/15	MW-25D-A FA29765-3 12/04/15	Relative Percent Difference
Volatile Organic Compounds by USEPA Method 8260B (µg/L)			
1,1,1-Trichloroethane	< 0.26	< 0.26	NC
1,1,2,2-Tetrachloroethane	< 0.22	< 0.22	NC
1,1,2-Trichloroethane	< 0.31	< 0.31	NC
1,1-Dichloroethane	< 0.2	< 0.2	NC
1,1-Dichloroethylene	3.4	3.5	3
1,2-Dichloroethane	< 0.2	< 0.2	NC
1,2-Dichloropropane	< 0.25	< 0.25	NC
2-Butanone (MEK)	< 1.2	< 1.2	NC
2-Hexanone	< 2	< 2	NC
4-Methyl-2-pentanone (MIBK)	< 1	< 1	NC
Acetone	< 10	< 10	NC
Benzene	< 0.2	< 0.2	NC
Bromodichloromethane	< 0.22	< 0.22	NC
Bromoform	< 0.32	< 0.32	NC
Carbon Disulfide	< 0.29	< 0.29	NC
Carbon Tetrachloride	< 0.28	< 0.28	NC
Chlorobenzene	< 0.2	< 0.2	NC
Chloroethane	< 0.5	< 0.5	NC
Chloroform	< 0.3	< 0.3	NC
cis-1,2-Dichloroethylene	1.3	1.3	0
cis-1,3-Dichloropropene	< 0.25	< 0.25	NC
Dibromochloromethane	< 0.2	< 0.2	NC
Ethylbenzene	< 0.2	< 0.2	NC
Methyl Bromide	< 0.5	< 0.5	NC
Methyl Chloride	< 0.5	< 0.5	NC
Methylene Chloride	< 2	< 2	NC
Styrene	< 0.28	< 0.28	NC
Tetrachloroethylene	129	136	5
Toluene	< 0.4	< 0.4	NC
trans-1,2-Dichloroethylene	< 0.21	< 0.21	NC
trans-1,3-Dichloropropene	< 0.26	< 0.26	NC
Trichloroethylene	0.95 J//	0.97 J//	NC
Vinyl Chloride	< 0.25	< 0.25	NC
Xylene (total)	< 0.51	< 0.51	NC

Notes:

-A - Indicates a field duplicate sample.

NC - Not Calculated

RPD - Relative Percent Difference

µg/L - micrograms per liter (parts per billion)

Bold font and shading indicate the concentration is detected.

See Table 9 for explanation of data qualifiers.

Table 8
Analytical Results for Investigation-Derived Waste Sample
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample ID Laboratory ID Date Collected	USEPA Toxicity Characteristic	AQUEOUS IDW-1 FA29765-5 12/4/2015	SOLID IDW-1 FA29765-6 12/4/2015
Volatile Organic Compounds by Method 8260B (µg/L)			
1,1,1-Trichloroethane	—	< 0.51	NA
1,1,2,2-Tetrachloroethane	—	< 0.45	NA
1,1,2-Trichloroethane	—	< 0.63	NA
1,1-Dichloroethane	—	< 0.4	NA
1,1-Dichloroethylene	700	< 0.54	< 2.7
1,2-Dichloroethane	500	< 0.4	< 2
1,2-Dichloropropane	—	< 0.51	NA
1,4-Dichlorobenzene	7500	NA	< 2.5
2-Butanone (MEK)	200,000	< 2.3	< 10
2-Hexanone	—	< 4	NA
4-Methyl-2-pentanone (MIBK)	—	< 2	NA
Acetone	—	< 20	NA
Benzene	500	< 0.4	< 2
Bromodichloromethane	—	< 0.43	NA
Bromoform	—	< 0.65	NA
Carbon Disulfide	—	< 0.59	NA
Carbon Tetrachloride	500	< 0.56	< 2.8
Chlorobenzene	100,000	< 0.4	< 2
Chloroethane	—	< 1	NA
Chloroform	6,000	< 0.6	< 3
cis-1,2-Dichloroethylene	—	0.72	J//
cis-1,3-Dichloropropene	—	< 0.5	NA
Dibromochloromethane	—	< 0.4	NA
Ethylbenzene	—	< 0.4	NA
Methyl Bromide	—	< 1	NA
Methyl Chloride	—	< 1	NA
Methylene Chloride	—	< 4	NA
Styrene	—	< 0.56	NA
Tetrachloroethylene	700	86.9	< 3.3
Toluene	—	< 0.8	NA
trans-1,2-Dichloroethylene	—	< 0.42	NA
trans-1,3-Dichloropropene	—	< 0.52	NA
Trichloroethylene	500	< 0.43	< 2.2
Vinyl Chloride	200	< 0.5	< 2.5
Xylene (total)	—	< 1	NA
Semivolatile Organic Compounds by Method 8270D (µg/L)			
1,2,4-Trichlorobenzene	—	< 0.5	NA
1,2-Dichlorobenzene	—	< 0.5	NA
1,3-Dichlorobenzene	—	< 0.63	NA
1,4-Dichlorobenzene	7,500	< 0.65	< 6.5
2,4,5-Trichlorophenol	400,000	< 0.68	< 6.8
2,4,6-Trichlorophenol	2,000	< 0.63	< 6.3
2,4-Dichlorophenol	—	< 0.5	NA
2,4-Dimethylphenol	—	< 0.5	NA
2,4-Dinitrophenol	—	< 5	NA
2,4-Dinitrotoluene	130	< 0.58	< 5.8
2,6-Dinitrotoluene	—	< 0.69	NA
2-Chloronaphthalene	—	< 0.5	NA
2-Chlorophenol	—	< 0.5	NA
2-Methylnaphthalene	—	< 0.5	NA
2-Methylphenol	200,000	< 0.5	< 5
2-Nitroaniline	—	< 0.5	NA
2-Nitrophenol	—	< 0.88	NA
3&4-Methylphenol	200,000	< 1	< 10
3,3'-Dichlorobenzidine	—	< 0.52	NA
3-Nitroaniline	—	< 0.53	NA
4,6-Dinitro-o-cresol	—	< 2.1	NA
4-Bromophenyl Phenyl Ether	—	< 0.64	NA
4-Chloro-3-methyl Phenol	—	< 0.5	NA
4-Chloroaniline	—	< 0.5	NA
4-Chlorophenyl Phenyl Ether	—	< 0.57	NA
4-Nitroaniline	—	< 0.99	NA
4-Nitrophenol	—	< 5	NA

Table 8
Analytical Results for Investigation-Derived Waste Sample
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Sample ID Laboratory ID Date Collected	USEPA Toxicity Characteristic	AQUEOUS IDW-1 FA29765-5 12/4/2015	SOLID IDW-1 FA29765-6 12/4/2015
Semivolatile Organic Compounds by Method 8270D (µg/L)			
Acenaphthene	—	< 0.5	NA
Acenaphthylene	—	< 0.5	NA
Anthracene	—	< 0.5	NA
Benzo(a)anthracene	—	< 0.5	NA
Benzo(a)pyrene	—	< 0.5	NA
Benzo(b)fluoranthene	—	< 0.58	NA
Benzo(g,h,i)perylene	—	< 0.66	NA
Benzo(k)fluoranthene	—	< 0.68	NA
Benzoic Acid	—	< 10	/R/c
Benzyl Alcohol	—	< 0.85	NA
bis(2-Chloroethoxy)methane	—	< 0.63	NA
bis(2-Chloroethyl)ether	—	< 0.69	NA
bis(2-Chloroisopropyl)ether	—	< 0.5	NA
bis(2-Ethylhexyl)phthalate	—	< 1	NA
Butyl Benzyl Phthalate	—	< 1	NA
Carbazole	—	< 0.5	NA
Chrysene	—	< 0.51	NA
Dibenzo(a,h)anthracene	—	< 0.68	NA
Dibenzofuran	—	< 0.5	NA
Diethyl Phthalate	—	< 1.4	NA
Dimethyl Phthalate	—	< 1	NA
Di-n-butyl Phthalate	—	< 1	NA
Di-n-octyl Phthalate	—	< 1	NA
Fluoranthene	—	< 0.5	NA
Fluorene	—	< 0.5	NA
Hexachlorobenzene	130	< 0.63	< 6.3
Hexachlorobutadiene	500	< 0.6	< 6
Hexachlorocyclopentadiene	—	< 1	NA
Hexachloroethane	3,000	< 0.68	< 6.8
Indeno(1,2,3-cd)pyrene	—	< 0.63	NA
Isophorone	—	< 0.51	NA
Naphthalene	—	< 0.5	NA
Nitrobenzene	2,000	< 0.52	< 5.2
N-Nitrosodi-n-propylamine	—	< 0.58	NA
N-Nitrosodiphenylamine	—	< 0.59	NA
Pentachlorophenol	100,000	< 5	< 50
Phenanthrene	—	< 0.51	NA
Phenol	—	< 0.5	NA
Pyrene	—	< 0.55	NA
Pyridine	5,000	NA	< 20
Metals by Method 6010C/7470B (µg/L)			
Antimony	—	2 J//	NA
Arsenic	5,000	< 1.3	< 10
Barium	100,000	NA	120 J//
Beryllium	—	0.3 J//	NA
Cadmium	1,000	1 J//	< 2
Chromium	5,000	12.8	< 10
Copper	—	8.6 J//	NA
Lead	5,000	5.5	< 10
Mercury	200	< 0.03	< 0.5
Nickel	—	3.4 J//	NA
Selenium	1,000	< 2.9	< 20
Silver	5,000	< 0.7	< 7
Thallium	—	< 1.4	NA
Zinc	—	34.1	NA

Notes:

— - No Standard

IDW - Investigation Derived Waste

µg/L - micrograms per liter (parts per billion)

USEPA Toxicity Characteristic - United States Environmental Protection

Agency Maximum Concentration of Contaminants for the Toxicity
Characteristic (40CFR§261.24 Toxicity Characteristic, July 1, 2007).

Bold font and shading indicates the analyte was detected.

See Table 9 for explanation of data qualifiers.

Table 9
Summary of Analytical Data Qualifiers
UTC Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

<u>Modifier</u>	<u>Description</u>
<	Indicates not detected at the reporting limit indicated.
"/"	Separates the laboratory added data qualifiers from the validation data qualifiers. The laboratory added data qualifiers precede the first "/". The result qualifiers follow the first "/", and the analysis qualifiers follow the second "/". The result qualifiers are a product of the data validation process, and the analysis qualifier defines the type of QC excursion.

Laboratory Data Qualifiers

<u>Qualifier</u>	<u>Description</u>
J	Estimated concentration above the method detection limit and below the reporting limit.

Result Data Qualifiers

<u>Qualifier</u>	<u>Description</u>
M	A matrix effect was present.

Analysis Data Qualifiers

<u>Qualifier</u>	<u>Description</u>
m	Matrix spike recovery below the established criteria.

Table 10
Proposed Sampling Plan
Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Well Number	Northing	Easting	Date Installed	Classification	Screen Interval (ft bgs)	Spring 2016 Semi-Annual Sampling			Fall 2016 Semi-Annual Sampling		
						Field Water Quality Indicator Parameters	VOCs	MNA Parameters	Field Water Quality Indicator Parameters	VOCs	MNA Parameters
Off-Site Background Areas											
MW-17	528054.31	1985785.06	3/4/2014	Shallow	13-28	-	-	-	X	X	-
MW-18	527976.58	1986054.35	3/3/2014	Shallow	11-26	-	-	-	X	X	-
On-Site Background Areas											
MW-4	527583.49	1986403.57	6/4/2003	Shallow	4-14	-	-	-	X	X	-
Wooded Areas of Interest											
MW-9	527756.57	1986053.98	12/29/2003	Shallow	5-20	X	X	X	X	X	-
MW-9D	527787.94	1985973.71	12/14/2007	Deep	44-49	-	-	-	X	X	-
MW-10	527820.72	1985721.19	12/30/2003	Shallow	3-18	X	X	X	X	X	-
MW-10D	527855.07	1985712.71	12/14/2007	Deep	43-48	-	-	-	X	X	-
MW-11	527901.23	1985444.60	12/30/2003	Shallow	3-18	-	-	-	X	X	-
Manufacturing Areas											
MW-1	527377.94	1985969.04	6/4/2003	Shallow	3-18	X	X	-	X	X	-
MW-2	527303.71	1985841.78	6/4/2003	Shallow	3-18	X	X	-	X	X	-
MW-3	527219.26	1986012.34	6/4/2003	Shallow	3-18	X	X	-	X	X	-
MW-3D	527231.99	1986009.14	12/13/2007	Deep	44-49	X	X	-	X	X	-
MW-3D1	527243.77	1986004.60	10/29/2009	Deep	75-85	-	-	-	X	X	-
MW-5	527628.44	1985730.62	6/4/2003	Shallow	4-14	X	X	-	X	X	-
MW-6	527681.37	1985867.15	6/4/2003	Shallow	4-14	-	-	-	X	X	-
MW-7	527150.98	1986039.96	12/30/2003	Shallow	5-20	X	X	-	X	X	-
MW-8	527572.13	1985974.43	12/29/2003	Shallow	5-20	X	X	-	X	X	-
MW-12D	527322.24	1985335.17	10/29/2009	Deep	40-50	X	X	-	X	X	-
MW-13D	527143.18	1985615.99	10/29/2009	Deep	40-50	X	X	-	X	X	-
MW-19	527456.18	1985777.81	3/1/2014	Shallow	5-20	X	X	-	X	X	-
MW-20	527388.72	1985893.51	3/2/2014	Shallow	5-15	X	X	-	X	X	-
MW-21	527332.46	1985891.49	2/25/2014	Shallow	19-34	X	X	X	X	X	-
MW-21D	527235.35	1985871.60	2/25/2014	Deep	43-53	X	X	X	X	X	-
MW-24	527332.95	1985487.59	12/3/2015	Shallow	6-21	X	X	X	X	X	-

Table 10
Proposed Sampling Plan
Delavan Spray Technologies Site
Bamberg, South Carolina
AECOM Project No. 60314964

Downgradient Off-Site Areas											
MW-14	526965.63	1985984.33	10/26/2009	Shallow	5-20	X	X	-	X	X	-
MW-14D	526962.99	1985976.64	10/27/2009	Deep	40-50	X	X	-	X	X	-
MW-15	526981.84	1984425.77	5/18/2011	Shallow	4-19	X	X	-	X	X	-
MW-15D	526971.08	1984437.05	5/19/2011	Deep	35-45	X	X	-	X	X	-
MW-15D1	526961.60	1984442.37	4/30/2012	Deep	75-85	X	X	-	X	X	-
MW-16	526703.00	1984676.68	5/16/2011	Shallow	4-19	X	X	-	X	X	-
MW-16D	526694.72	1984670.89	5/17/2011	Deep	35-45	X	X	-	X	X	-
MW-22D	526303.91	1985723.83	2/26/2014	Deep	38-48	X	X	X	X	X	-
MW-23D	527141.40	1986387.76	2/27/2014	Deep	40-50	X	X	-	X	X	-
MW-25D	525988.09	1985257.31	12/2/2015	Deep	52-62	X	X	X	X	X	-
MW-26D	525547.18	1985631.39	12/1/2015	Deep	38-48	X	X	X	X	X	-
Totals						27	27	8	35	35	0
QA/QC Samples											
Field Duplicate	one per 10 samples				-	3	-	-	3	-	-
MS/MSD	one per 20 samples				-	1	-	-	2	-	-
Rinesate Blank	one per 20 samples for re-useable sampling equipment				NA - peristaltic pump / disp. tubing			NA - peristaltic pump / disp. tubing			
Trip Blank	one per cooler shipment				-	3	-	-	4	-	-

Notes:

bgs = below ground surface NA = Not Applicable

APPENDIX A FIELD DOCUMENTATION

- Calibration Records
- Tailgate Safety Meeting Logs
- Test Boring Reports
- Water Well Records
- Monitoring Well Construction Details
- Monitoring Well Development Logs
- Field Data Logs for Groundwater Sampling
- Chain of Custody Forms
- IDW Management Form
- Logbooks

Project Name: WTC Delavan Bamberg
 Project Number: 6034964.11
 Calibrated By: Randy Morgan
 Signature: Randy Morgan

YSI 556 SN: 04M1480 AA
 Turbidimeter Model/SN: MicroTPW 200703026
 Additional Equipment/SN: _____
 Date: 12-4-15

Operation Notes:

1) Turn meter on in Run mode and allow to warm up 10-15 minutes prior to calibration. 2) Observe DO% for 2-3 minutes when meter is initially turned on 3) The unit should display decreasing values until it is stabilized near-100% 4) If the meter does not stabilize at/near 100%, indicates the DO sensor requires maintenance

These values should be keyed in when calibrating a water quality meter. Be sure to use the temperature of the standards not ambient temperature and the temperature sensor is submerged in solution.

Table 1: Calibration Values At Various Temperatures					
Temp., C	PH 4	PH 7	PH 10	Conductivity	ORP
5	4.00	7.07	10.19	896.00	257.00
10	4.00	7.06	10.16	1020.00	250.50
15	4.00	7.04	10.10	1147.00	244.00
20	4.00	7.02	10.05	1278.00	237.50
25	4.00	7.01	10.01	1413.00	231.00
30	4.00	6.99	9.96	1548.00	224.50

mm Hg = Millimeters of Mercury. Note that the YSI 556 uses this information ONLY when the DO calibration is being done. After calibration is complete it no longer corrects for pressure change. Verify the meter is correct for your altitude when calibrating.

Table 2: Atmospheric Pressure / Altitude Table					
Altitude feet (asl)	Pressure (mmHG)	Altitude feet (asl)	Pressure (mmHG)	Altitude feet (asl)	Pressure (mmHG)
0	760	1126	730	2290	699
278	752	1413	722	2587	692
558	745	1703	714	2887	684
841	737	1995	707	3190	676

Table 3: DO% Saturation VS. Temperature									
Temp C	DO	Temp C	DO	Temp C	DO	Temp C	DO	Temp C	DO
15	10.084	20	9.092	25	8.263	30	7.559	35	6.950
16	9.870	21	8.915	26	8.113	31	7.430	36	6.837
17	9.665	22	8.743	27	7.968	32	7.305	37	6.727
18	9.467	23	8.578	28	7.827	33	7.183	38	6.620
19	9.276	24	8.418	29	7.691	34	7.065	39	6.515

YSI 556 Calibration					
Parameter		Before Calibration		After Calibration	
Barometric Pressure		763.9		0600	
Temperature (Saturated Air)		22.18		22.33	
Temperature (Calibration Solution)		21.19		22.30	
D.O.		8.81		8.75	
PH 7		7.39		7.02	
PH 4		3.75		4.00	
PH 10		9.47		9.93	
Specific Conductance		1.279		1.278	
ORP		236.7		237.5	

MicroTPW Calibration		
Calibrations performed 0.02, 10, and 1000 NTU	Calibrations accepted:	<input checked="" type="checkbox"/> YES <input type="checkbox"/> NO Circle One

Project Name: Delavan
 Project Number: UTC Bamberg
 Calibrated By: Randy Morgan
 Signature: Randy Morgan

Operation Notes:

1) Turn meter on in Run mode and allow to warm up 10-15 minutes prior to calibration. 2) Observe DO% for 2-3 minutes when meter is initially turned on 3) The unit should display decreasing values until it is stabilized near-100% 4) If the meter does not stabilize at/near 100%, indicates the O.O. sensor requires maintenance

These values should be keyed in when calibrating a water quality meter. Be sure to use the temperature of the standards not ambient temperature and the temperature sensor is submerged in solution.

Table 1: Calibration Values At Various Temperatures					
Temp., C	PH 4	PH 7	PH 10	Conductivity	ORP
5	4.00	7.07	10.19	896.00	257.00
10	4.00	7.06	10.16	1020.00	250.50
15	4.00	7.04	10.10	1147.00	244.00
20	4.00	7.02	10.05	1278.00	237.50
25	4.00	7.01	10.01	1413.00	231.00
30	4.00	6.99	9.96	1548.00	224.50

mm Hg = Millimeters of Mercury. Note that the YSI 556 uses this information ONLY when the DO calibration is being done. After calibration is complete it no longer corrects for pressure change. Verify the meter is correct for your altitude when calibrating.

Table 2: Atmospheric Pressure / Altitude Table					
Altitude feet (asl)	Pressure (mmHG)	Altitude feet (asl)	Pressure (mmHG)	Altitude feet (asl)	Pressure (mmHG)
0	760	1126	730	2290	699
278	752	1413	722	2587	692
558	745	1703	714	2887	684
841	737	1995	707	3190	676

Table 3: DO% Saturation VS. Temperature									
Temp C	DO	Temp C	DO	Temp C	DO	Temp C	DO	Temp C	DO
15	10.084	20	9.092	25	8.263	30	7.559	35	6.950
16	9.870	21	8.915	26	8.113	31	7.430	36	6.837
17	9.665	22	8.743	27	7.968	32	7.305	37	6.727
18	9.457	23	8.578	28	7.827	33	7.183	38	6.620
19	9.276	24	8.418	29	7.691	34	7.065	39	6.515

YSI 556 Calibration					
Parameter	Before Calibration	After Calibration	Time	Units	
Barometric Pressure	755.3	0630	mmHg		
Temperature (Saturated Air)	22.41	22.32	0630	c	
Temperature (Calibration Solution)	21.35	22.11	0630	c	
D.O.	8.38	8.64	0630	mg/L	
PH 7	7.62	7.02	0638	SU	
PH 4	3.67	4.00	0642	SU	
PH 10	9.32	9.90	0646	SU	
Specific Conductance	1.257	1.278	0634	mS/cm	
ORP	235.7	237.5	0630	mV	

MicroTPW Calibration					
Calibrations performed 0.02, 10, and 1000 NTU	Calibrations accepted:	YES	NO	Circle One	

AECOM

Tailgate Safety Meeting Log*

This sign-in log documents the topics of the tailgate safety briefing and individual attendance at the briefing. Personnel who perform work operations onsite are required to attend each safety briefing and acknowledge their ability to ask questions and receipt of such briefings daily. Please provide a brief narrative of the following topics as applicable to the Project.

Meeting Leader <i>Chuck Suddeth</i>	Signature <i>Charles K. Suddeth</i>
Date /Time <i>11/30/15</i>	Project Name & Location UTC Kelowna Specialty Chemicals Site Beaufort, SC
Weather Conditions <i>clear, mild</i>	Project Number <i>60314964</i>
Topic	Discussion (Circle one)
Today's Scope of Work (All tasks)	<input checked="" type="radio"/> yes / NA
Schedule / New Work / Scope Changes	<input checked="" type="radio"/> yes / NA
Reviewed Procedures, THA, etc.	<input checked="" type="radio"/> yes / NA
Emergency Action Plan & Procedures	<input checked="" type="radio"/> yes / NA
Communications Protocol	<input checked="" type="radio"/> yes / NA
Required PPE	<input checked="" type="radio"/> yes / NA
Required Monitoring / Instruments	<input checked="" type="radio"/> yes / NA
Site Control / Work Zones / Security	<input checked="" type="radio"/> yes / NA
Access / Egress / Slips, Trips, & Falls	<input checked="" type="radio"/> yes / NA
Smoking, Eating, & Drinking	<input checked="" type="radio"/> yes / NA
Washroom / Facilities Location	<input checked="" type="radio"/> yes / NA
Heat/Cold Stress	<input checked="" type="radio"/> yes / NA
Exclusion Areas Barricades / Cones	<input checked="" type="radio"/> yes / NA
Required Permits, Passes, Keys, etc.	<input checked="" type="radio"/> yes / NA
Decon Procedures / IDW Mngmt	<input checked="" type="radio"/> yes / NA
Equipment Inspections /Safety Checklists	<input checked="" type="radio"/> yes / NA
Comments/Other: Cardinal Rules: Confined Space (<input checked="" type="checkbox"/> , GFCI (<input checked="" type="checkbox"/> , Elevated Work (<input checked="" type="checkbox"/> , Lockout/Tagout (<input checked="" type="checkbox"/> , and Machine Guarding (<input checked="" type="checkbox"/> . No loose/leather gloves near rotating equipment.	
Tailgate Meeting Attendees	
Printed Name	Signature
<i>SCOTT T. SMITH</i>	<i>Scott T. Smith</i>
<i>Jamy Atkinson</i>	<i>Jamy Atkinson</i>
<i>KANISTHA C. COOMBS</i>	<i>Kanistha C. Coombs</i>
<i>Logan Alexander</i>	<i>Logan Alexander</i>
<i>Randy Morgan</i>	<i>Randy Morgan</i>
<i>Sam Grover</i>	<i>Sam Grover</i>
<i>Will Keyes</i>	<i>Will Keyes</i>
<i>Bret Saunders</i>	<i>Bret Saunders</i>
<i>Wes Smoak</i>	<i>Wes Smoak</i>
<i>JOSEPH MOSTAINTS</i>	<i>Joseph Mostaint</i>

*This form is to be utilized for documenting daily safety meetings and stored with project files upon completion

Tailgate Safety Meeting Log*

This sign-in log documents the topics of the tailgate safety briefing and individual attendance at the briefing. Personnel who perform work operations onsite are required to attend each safety briefing and acknowledge their ability to ask questions and receipt of such briefings daily. Please provide a brief narrative of the following topics as applicable to the Project.

Meeting Leader <i>Chuck Suddeth</i>	Signature <i>Charles K. Suddeth</i>
Date /Time <i>12/1/15</i>	Project Name & Location UTC Delavan Spray Technologies Site Bamberg, South Carolina
Weather Conditions <i>Cloudy, fog</i>	Project Number 60314964
Topic	Discussion (Circle one)
Today's Scope of Work (All tasks)	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Schedule / New Work / Scope Changes	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Reviewed Procedures, THA, etc.	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Emergency Action Plan & Procedures	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Communications Protocol	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Required PPE	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Required Monitoring / Instruments	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Site Control / Work Zones / Security	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Access / Egress / Slips, Trips, & Falls	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Smoking, Eating, & Drinking	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Washroom / Facilities Location	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Heat/Cold Stress	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Exclusion Areas Barricades / Cones	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Required Permits, Passes, Keys, etc.	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Decon Procedures / IDW Mngmt	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Equipment Inspections /Safety Checklists	<input checked="" type="radio"/> yes / <input type="radio"/> NA

Comments/Other: Cardinal Rules: Confined Space (, GFCI (, Elevated Work (, Lockout/Tagout (, and Machine Guarding (, No loose/leather gloves near rotating equipment.

Tailgate Meeting Attendees	
Printed Name	Signature
Will Kneppes	<i>Will Kneppes</i>
Sam Dovel	<i>Sam Dovel</i>
Joseph Moskaitis	<i>Joseph Moskaitis</i>
Brad Saunders	<i>Brad Saunders</i>
Randy Morgan	<i>Randy Morgan</i>
Leslie Alexander	<i>Leslie Alexander</i>

Tailgate Safety Meeting Log*

This sign-in log documents the topics of the tailgate safety briefing and individual attendance at the briefing. Personnel who perform work operations onsite are required to attend each safety briefing and acknowledge their ability to ask questions and receipt of such briefings daily. Please provide a brief narrative of the following topics as applicable to the Project.

Meeting Leader <i>Leslie Alexander</i>	Signature <i>Leslie Alexander</i>
Date /Time <i>12/2/15 0755</i>	Project Name & Location UTC Delavan Spray Technologies Site Bamberg, South Carolina
Weather Conditions <i>Cloudy, chance of rain</i>	Project Number 60314964
Topic	Discussion (Circle one)
Today's Scope of Work (All tasks)	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Schedule / New Work / Scope Changes	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Reviewed Procedures, THA, etc.	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Emergency Action Plan & Procedures	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Communications Protocol	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Required PPE	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Required Monitoring / Instruments	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Site Control / Work Zones / Security	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Access / Egress / Slips, Trips, & Falls	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Smoking, Eating, & Drinking	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Washroom / Facilities Location	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Heat/Cold Stress	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Exclusion Areas Barricades / Cones	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Required Permits, Passes, Keys, etc.	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Decon Procedures / IDW Mngmt	<input checked="" type="radio"/> yes / <input type="radio"/> NA
Equipment Inspections /Safety Checklists	<input checked="" type="radio"/> yes / <input type="radio"/> NA

Comments/Other: Cardinal Rules: Confined Space (X), GFCI (X), Elevated Work (X), Lockout/Tagout (X), and Machine Guarding (X). No loose/leather gloves near rotating equipment.

Tailgate Meeting Attendees	
Printed Name	Signature
<i>Byrd Saunders</i>	<i>Byrd Saunders</i>
<i>Randy Morsa</i>	<i>Randy Morsa</i>
<i>Sam Davis</i>	<i>Sam Davis</i>
<i>Will Kelley</i>	<i>Will Kelley</i>
<i>Joseph Moskowitz</i>	<i>Joseph Moskowitz</i>
<i>Chuck Suddeth</i>	<i>Chuck Suddeth</i>

AECOM
Tailgate Safety Meeting Log*

This sign-in log documents the topics of the tailgate safety briefing and individual attendance at the briefing. Personnel who perform work operations onsite are required to attend each safety briefing and acknowledge their ability to ask questions and receipt of such briefings daily. Please provide a brief narrative of the following topics as applicable to the Project.

Meeting Leader <i>Chuck Suddeth</i>	Signature <i>Charles K. Suddeth</i>
Date / Time <i>12/3/15</i>	Project Name & Location UTC Belavan Spray Technologies Site Bamberg, South Carolina
Weather Conditions <i>cloudy, cool</i>	Project Number 60314964
<i>Topic</i>	<i>Discussion (Circle one)</i>
Today's Scope of Work (All tasks)	<input checked="" type="checkbox"/> / NA
Schedule / New Work / Scope Changes	<input checked="" type="checkbox"/> / NA
Reviewed Procedures, THA, etc.	<input checked="" type="checkbox"/> / NA
Emergency Action Plan & Procedures	<input checked="" type="checkbox"/> / NA
Communications Protocol	<input checked="" type="checkbox"/> / NA
Required PPE	<input checked="" type="checkbox"/> / NA
Required Monitoring / Instruments	<input checked="" type="checkbox"/> / NA
Site Control / Work Zones / Security	<input checked="" type="checkbox"/> / NA
Access / Egress / Slips, Trips, & Falls	<input checked="" type="checkbox"/> / NA
Smoking, Eating, & Drinking	<input checked="" type="checkbox"/> / NA
Washroom / Facilities Location	<input checked="" type="checkbox"/> / NA
Heat/Cold Stress	<input checked="" type="checkbox"/> / NA
Exclusion Areas Barricades / Cones	<input checked="" type="checkbox"/> / NA
Required Permits, Passes, Keys, etc.	<input checked="" type="checkbox"/> / NA
Decon Procedures / IDW Mngmt	<input checked="" type="checkbox"/> / NA
Equipment Inspections /Safety Checklists	<input checked="" type="checkbox"/> / NA
Comments/Other: Cardinal Rules: Confined Space (<input checked="" type="checkbox"/>), GFCI (<input checked="" type="checkbox"/>), Elevated Work (<input checked="" type="checkbox"/>), Lockout/Tagout (<input checked="" type="checkbox"/>), and Machine Guarding (<input checked="" type="checkbox"/>). No loose/leather gloves near rotating equipment.	
Tailgate Meeting Attendees	
Printed Name	Signature
<i>Will Hayes</i>	<i>LJ for</i>
<i>Sam Danner</i>	<i>S. Danner</i>
<i>Brian Saunders</i>	<i>Brian</i>
<i>Randy Morgan</i>	<i>Randy Morgan</i>

Test Boring Report

BORING NO. BG-6PAGE 1 OF 2

PROJECT: UTC Delavan Spray Technologies Site
 CLIENT: UTC
 CONTRACTOR: AECOM SAEDACCO
 EQUIPMENT: Hand Auger GARDNER 54DR

PROJECT NO: 60314964

LOCATION: near BG-5

ELEVATION:

DATE START: 12/1/15DATE FINISH: 12/1/15DRILLER: NA W KeyesPREPARED BY: L. Alexander

GROUND WATER		DEPTH TO:		CASING	SAMPLER	CORE BARREL		
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	NA	Hand Auger	NA
					SIZE ID	NA	3.25" ID	NA
					HAMMER WT	NA	NA	NA
					HAMMER FALL	NA	NA	NA

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
	D					
1.0	D					
	D	No analytical samples collected	0-4'			
2.0	D					
	D					
3.0	D					
	D					
4.0	D					
	D	BG-6-6				
		D: 4-6'				
		T: 10SS				
		A: TDD				
5.0	D					
	D					
6.0	D					
	D					
7.0	D	No analytical samples collected				
	D					
8.0	D					
	D	BG-6-10				
		D: 8-10'				
		T: 1105				
		A: TDD				
9.0	D					
	D					
10.0	D					

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

Test Boring Report

BORING NO. B6-6
PAGE 2 OF 2

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS					
10.0									
12.5									
15.0									
17.5									
20.0									
22.5									
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS				NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	50-100%	WD	WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	30-45%	NE	NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	15-25%	UR	NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	5-10%	NR	NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	<5%		
		31+	HARD						

AECOM

Test Boring Report

 BORING NO. BG-7

 PAGE 1 OF 1

 PROJECT: UTC Delavan Spray Technologies Site
 CLIENT: UTC
 CONTRACTOR: AECOM ~~AECOM~~ SACDACC
 EQUIPMENT: Hand Auger ~~Geoprobe~~ SHDT

GROUND WATER	DEPTH TO:			CASING	SAMPLER	CORE BARREL		
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	NA	Hand Auger	NA
					SIZE ID	NA	3.25" ID	NA
					HAMMER WT	NA	NA	NA
					HAMMER FALL	NA	NA	NA

 PROJECT NO: 60314964

 LOCATION: Near BG-3

ELEVATION:

 DATE START: 12/1/15

 DATE FINISH: 12/1/15

 DRILLER: NA W. K.

 PREPARED BY: L. Alexander

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
6			0-2'	<u>SILTY SAND (SW)</u> , dry, very dark grayish brown (10YR 3/2), mostly fine- medium sand, little silt, trace- few organics & roots				
1.0	0	No analytical samples collected	0-2'	1-4" <u>POORLY GRADED SAND (SP)</u> , dry, light olive brown (2.5Y 5/4), mostly v. fine- fine sand, trace- few med sand, trace silt.				
2.0	0		2-4'	1" grading to light yellowish brown (2.5Y 6/4)				
3.0	0		2 1/2'	1" grading to <u>CLAYEY SAND (SC)</u> , moist, yellowish brown (10YR 5/4) mostly fine- med sand, little clay				
4.0	0			1.5" grading to dark yellowish brown (10YR 4/4).				
4.0	BG-7-L		4-8'					
5.0	D:4-L'		4'					
5.0	T:1025		4 1/4'					
6.0	0							
6.0	D							
6.0	BG-7-10		8-13'					
7.0	0	No analytical samples collected						
7.0	0							
8.0	0							
8.0	0	BG-7-10	8-13'	8' same as above but few clay lenses 1-2" thick, light gray (10YR 7/1), mostly clay, few med-coarse sand				
9.0	D:8-10'		2 1/2'					
9.0	T:1030							
9.0	0							
10.0	A:TOD							
10.0	D							

Boring terminated at 10' bgs. backfilled w/ soil and gravel.

Note: 2 holes were installed about 2' apart and samples were.

composite from both at intervals noted for top analysis.

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

Test Boring Report

BORING NO. DPT-58

PAGE 1 OF 2

PROJECT: UTC Delavan Spray Technologies Site
 CLIENT: UTC
 CONTRACTOR: AECOM • SARDACCO
 EQUIPMENT: Hand Auger • Geoprobe S4 DT

PROJECT NO: 60314964

LOCATION: ~~Office of the Director~~ room

ELEVATION:

DATE START: 12/1/15

DATE FINISH: 12/1/15

DRILLER: ~~NAW~~ W. K. Hayes

PREPARED BY: L. Alexander

GROUND WATER		DEPTH TO:		CASING	SAMPLER	CORE BARREL		
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	NA	Hand Auger	NA
					SIZE ID	NA	3.25" ID	NA
					HAMMER WT	NA	NA	NA
					HAMMER FALL	NA	NA	NA
DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION		SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS			
		No analytical samples collected		0-2' Hand Auger	CONCRETE - 4.5" thick 0.4' <u>poorly sorted sand</u> (sr), moist, light olive brown (2.5 Y 8/4), mostly fine - mid sand, trace coarse sand.			
1.0	125.8			2-4'	- 1.5' grading to <u>coarse sand</u> (sc), moist, yellowish brown (10 YR 5/8), mostly fine - mid sand, some clay.			
2.0	150.6			2 1/2'	- 2.5' sand content increasing w/ depth			
3.0	74.3				- 3' <u>well graded sand</u> (sc) / <u>clay</u> (sw-sc), moist, light gray (2.5 Y 7/2), mottled w/ yellowish brown (10 YR 5/8), and yellowish red (5 YR 4/8), mostly fine - coarse sand, little clay.			
4.0					- 4' grading to <u>coarse sand</u> (sc), like 1.5' above.			
5.0	173.3			4-8'	- 5.3' <u>well graded sand</u> / <u>clay</u> (sw-sc), like 3' above but yellowish brown (10 YR 5/8) and yellowish red (5 YR 4/8).			
5.5	12.5			4 1/4'	- 6' grading to <u>sandy clay</u> (cl), moist, light gray (2.5 Y 7/2), mostly clay, some fine - coarse sand & silt.			
6.0	65				- 6.5' <u>well graded sand</u> w/ <u>clay</u> (sw-sc), moist, yellowish red (5 YR 4/8), mostly fine coarse sand, few clay, w/ lenses of <u>clay</u> (cl) like 6' above; lenses are 1-3" thick			
7.0	3.5				- 8' same as above			
8.0	3.8				- 8'			
8.5	36.3				- 9.5' grading to <u>coarse sand</u> (sc), moist, strong brown (7.5 YR 5/8), mostly fine - coarse sand, little clay			
9.0	22.3							
10.0								

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY 50-100%
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME 30-45%
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE 15-25%
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW 5-10%
50+	VERY DENSE	16-30	VERY STIFF			TRACE <5%
		31+	HARD			

Test Boring Report

BORING NO. DPT-58
PAGE 2 OF 2

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS					
				10.0	12.5	15.0	17.5	20.0	
10.0	(0.1)	DPT-58-11 D: 10-11' T: 1400 A: Vol. & % Solids							
	4.4								
12.5	0.6	No analytical samples collected	12-16'	4/4'	13' grading to POORLY SORTED SAND (sw), wet, yellowish red (7.5YR 6/8'), mostly medium sand, trace-few clay				
	14.4				- clay content increasing w/ depth				
15.0	16.2				- 14.5' grading to CLAY/STY SAND (sc), wet, strong brown (7.5YR 5/8'), mostly med-coarse sand, little-some clay, interbedded w/ CLAY (ch) moist, pale yellow (5Y 8/12), mostly clay & silt, trace fine sand				
	8.7				Boring terminated at 16' bgs. Backfilled w/ sand to 15' bgs set 1" well w/ 6" perforate screen. Screen 5-15'				
17.5									
20.0									
22.5									
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES		
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	50-100%	WD	WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	30-45%	NE	NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	15-25%	UR	NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	5-10%	NR	NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	<5%		
		31+	HARD						

AECOM

fr. blank
temp blank

Test Boring Report

BORING NO. DPT-59PAGE 1 OF 2

PROJECT: UTC Delavan Spray Technologies Site
 CLIENT: UTC
 CONTRACTOR: AECOM
 EQUIPMENT: Hand Auger

PROJECT NO: 60314964
 LOCATION: right side concrete barrier

ELEVATION:

DATE START: 12/21/15DATE FINISH: 12/21/15

DRILLER: NA

PREPARED BY: L. Alexander
Wilkens & B. Sandus

GROUND WATER		DEPTH TO:		CASING	SAMPLER	CORE BARREL						
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	NA	Hand Auger	NA				
					SIZE ID	NA	3.25" ID	NA				
					HAMMER WT	NA	NA	NA				
					HAMMER FALL	NA	NA	NA				
DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION		SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS							
-1.0	14.5	DPT-59-3 D: 2-3' A: VD58 0.0501 T: 1205 WMS/1m		-4.5" concrete Pocky Gneiss (S?) dry, yellowish brown (10YR 5/8), mostly fine sand, trace silt -1" grading to creamy sand (SC) moist, yellowish brown (10YR 5/8) mostly fine sand, little clay. -2 color change to strong brown (7.5YR 5/8), increasing clay w/ depth -grading to sandy clay (CL), as above at 1 ft but strong brown (7.5YR 5/6), mostly clay, some fine sand -4" same as above but less sand. 1205/5.4 -5.0 13.0 14.1 13.1 9.0 12.3 12.3								
-2.0	14.4											
-3.0	15.4											
-4.0	1205/5.4											
-5.0	13.0											
-6.0	14.1											
-7.0	13.1											
-8.0	9.0											
-9.0	12.3											
-10.0	12.3											

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

UTC Test Boring Rpt

1230 instead well DPT-59 to 15

AECOM**Test Boring Report**BORING NO. DPT-59
PAGE 2 OF 2

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS
10.0				<i>Same as above</i>
15.7				
12.5				<i>grading to wet, yellowish red (5YR 5/8).</i>
15.0				<i>Boring terminated at 15 ft Installed well - screen 5-15 ft - 1" prepac Screen & 1" casing, 1 ft sand above screen & 1 ft bentonite. Allow bent. to hydrate before grout.</i>
17.5				
20.0				
22.5				

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	<5%	
		31+	HARD					

AECOM**Test Boring Report**BORING NO. DPT-60PAGE 1 OF 2

PROJECT: UTC Delavan Spray Technologies Site
 CLIENT: UTC
 CONTRACTOR: AECOM
 EQUIPMENT: Hand Auger

PROJECT NO: 60314964LOCATION: ELEVATION: DATE START: 12/2DATE FINISH: 12/2DRILLER: NA W/ GearsPREPARED BY: L. Alexander

B6s

GROUND WATER		DEPTH TO:		CASING	SAMPLER	CORE BARREL		
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	NA	Hand Auger	NA
					SIZE ID	NA	3.25" ID	NA
					HAMMER WT	NA	NA	NA
					HAMMER FALL	NA	NA	NA

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS
-1.0				4' concrete. Note - 1st location is ~ ft - towards DPT-38 hit concrete about 7' below 1st g' of concrete poorly graded sand (sp), dry, yellowish brown (10YR 5/6) mostly fine sand 1' same as above but moist - few clay/silt
-2.0	33.5	DPT-60-1 D: 0-1 A: VDLs, % Solids T: 1530		- 2' CLAYEY SAND (sc), moist, strong brown (7.5YR 5/6), mostly fine-medium sand; little sand/clay.
-3.0	18.9			- 3' poorly graded sand/clay (sp/sc), moist, like 2' above but few - little clay. interbedded w/ lenses of CLAY/SANDY CREEK (cl) moist, light gray (2.5Y 7/2), mostly clay, few - little sand. Same as above
-4.0	14.5			
-4.0	14.3			
-5.0	17.8			- same as above but grading to yellowish red (5YR 4/8) w/ light gray (2.5Y 7/2)
-6.0	16.3			- same as above
-7.0	22.9			- same as above but sand w/ few coarse (were broken)
-8.0	28.4	DPT-60-8-d Equipment block T: 1535 A: VDLs		
-9.0	33.9	DPT-60-8 D: 7-8 T: 1540 A: VDLs, % Solids		- WELL GRADED SAND w/ CLAY (sw-sc), moist, yellowish red (5YR 4/6), mostly fine - coarse sand, few clay, occasional clay lenses, white (2.5Y 8/1).
-10.0	31.7			

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

Test Boring Report

BORING NO. DPT-60
PAGE 2 OF 2

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS	
10.0				Same as above but red - v. coarse sand. Grading to wet, few ^{light} green mollus	
12.5	25.9			-12' Poorly graded sand (SP). wet, yellow (10YR 7/0), mostly fine - med sand. trace - clayey / silt.	
14.0	31.1			Same as above	
15.0	21.4			Boring terminated at 15ft bgs Installed 1" prepack screen (5'-15') w/ 1" casing. sand 1ft above & 10ft below	
17.5					
20.0					
22.5					

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

AECOM**Test Boring Report**BORING NO. DPT-61PAGE 1 OF 2

PROJECT: UTC Delavan Spray Technologies Site
 CLIENT: UTC
 CONTRACTOR: AECOM
 EQUIPMENT: Hand Auger

PROJECT NO: 60314964LOCATION: adjacent to DPT-101

ELEVATION:

DATE START: 12/21/15DATE FINISH: 12/21/15DRILLER: NAPREPARED BY: L. Alexander

GROUND WATER		DEPTH TO:		CASING	SAMPLER	CORE BARREL		
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	NA	Hand Auger	NA
					SIZE ID	NA	3.25" ID	NA
					HAMMER WT	NA	NA	NA
					HAMMER FALL	NA	NA	NA

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS
1.0	44.7			4" thick concrete poorly graded sand (Sp), dry, yellowish brown (10YR 5/6), moist fine sand
2.0	30.3			Same as above but gradually brownish yellow (10YR 6/6). Same as above from metate, fine, sand, fine red sand
3.0	32.9			grading to yellowish brown (10YR 5/8), few clay, moist
4.0	31.6			grading to as above but with clay, few-1% clay
5.0	34.0			grading to above mottled w/ calcreous sand (Sc), moist, yellowish red (5YR 4/6), mostly fine-mud sand, little some clay
6.0	50.7	DPT-61-6 D: 5'-6' A: voids 29, solids T: 1640		Same as above but w/ occasional Calcareous lenses, moist pale yellow (7.5Y) mostly clay, few-1% sand
7.0	50.3	DPT-61-88 DPT-61-8-6 (full dup) A: voids 29, solids T: 1650		Same as above but w/ occasional Calcareous lenses, moist pale yellow (7.5Y) mostly clay, few-1% sand
8.0	90.1			Same as above
9.0	50.3			Same as above
10.0				

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

Test Boring Report

BORING NO. DPT-61

PAGE 2 OF 2

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS
10.0				CUTTER SAND (Sc), mostly Strong brown (7.5YR 5/8), mottled w/ yellowish red (5YR 4/6) & occasional light gray (10YR 7/1), mostly fine-grained, little silt or clay.
12.5	39.2			~12' same as above but grading to wet, few little clay
15.0	49.7			- FIRM GRANULAR SANDS (SP) wet, reddish yellow (7.5YR 6/8), mostly fine med sand, little clay.
17.5	60.7			Boring terminated at 15 ft - 6 1/2' Set NCL screen 5-15'
20.0				
22.5				

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS		NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	<5%	
		31+	HARD					

Test Boring Report

BORING NO. MW-24
PAGE 1 OF 3

PROJECT: UTC Delavan Spray Technologies Site
CLIENT: UTC
CONTRACTOR: SAEDACCO
EQUIPMENT: Graprobe 8140 LS Sonic Rig

GROUND WATER	DEPTH TO:			CASING	SAMPLER	CORE BARREL	
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE	Acetate Liners	Core barrel
					SIZE ID		
					HAMMER WT		
					HAMMER FALL		

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS
2.5			0-4	SAND (sw), light yellowish brown 10YR 4/4, fine to medium grained, well graded, saturated.
5.0			4-7	SAND (sw), reddish yellow 7.5YR 7/8, fine to medium grained, few clay, well graded, wet.
7.5			7-17	CLAYEY SAND (SC), yellowish brown 10YR 5/8 to red 2.5YR 4/8, medium to coarse grained, little clay, well graded, saturated.
10.0				

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

Test Boring Report

BORING NO. MW-24
PAGE 2 OF 3

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
10.0				CLAYEY SILT (MH), pale yellow 2-5YR 8/2 to red 2-5YR 4/6, stiff, little clay, medium plasticity, wet.		
12.5	1.5		7-17	No recovery 13-27		
15.0						
17.5				SILT (ML), brownish yellow 10YR 6/6 to red 2-5YR 4/6, stiff, low plasticity, few clay, moist.		
20.0	1.5		17-27			
22.5	2.5			SAND (SW), yellow 10YR 7/6, fine to coarse grained, shells, well graded, calcareous, saturated.		
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

Test Boring Report

BORING NO. MW-24
PAGE 3 OF 3

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
22.5	310		17-27					
25.0								
27.5				No recovery 23-27				
30.0				Boring terminated at 27 ft.				
32.5								
35.0								
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES		
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	<5%	
		31+	HARD					

Test Boring Report

BORING NO. MW-25D
PAGE 1 OF 6

PROJECT: UTC Delavan Spray Technologies Site
 CLIENT: UTC
 CONTRACTOR: SAEDACCO
 EQUIPMENT: Geoprobe 8140 LS Sonic Rig

GROUND WATER		DEPTH TO:		CASING	SAMPLER	CORE BARREL		
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE		Acetate Liners	Core barrel
					SIZE ID			
					HAMMER WT			
					HAMMER FALL			

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS
2.5				2.5 - 4.0 ft: SAND (sw), light yellowish brown 10YR 4/4, fine to coarse grained, well graded, moist
4.0				
5.0	1.3			5.0 - 6.5 ft: CLAYEY SAND (SC), light gray 10YR 7/1 to brownish yellow 10YR 6/8, fine to coarse grained, little clay, well graded, wet
6.5				
7.5				6.5 - 8.0 ft: CLAY (ct), light gray 10YR 7/1, medium stiff, high plasticity, wet
8.0				
9.0				8.0 - 9.5 ft: CLAYEY SILT (MH), white 2.5Y 8/1, stiff, low plasticity, little clay, moist to wet
9.5				
10.0	0.4			

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

Test Boring Report

BORING NO. MW-25D
PAGE 2 OF 6

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS				
10.0				CLAYEY SILT (MH), white 2.5Y 8/1 to yellow 2.5Y 7/6, stiff, low plasticity, little clay, moist to wet				
12.5								
15.0	0.3		7-17	CLAYEY SILT (MH), white 2.5Y 8/1 with layers of light red 2.5YR 6/6, stiff, low plasticity, little clay, wet				
17.5				SAND (sw), pale olive 5Y 6/3 to yellowish brown 10YR 5/6, fine to medium grained, well graded, saturated.				
20.0	0.2		17-27					
22.5								
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES		
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	<5%	
		31+	HARD					

Test Boring Report

BORING NO. MW-25D
PAGE 3 OF 6

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION		SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS			
22.5								
25.0	0.8			17-27	LIMESTONE (sw), pale yellow 5 1/2, fine to coarse grained, sand and shell fragments, well graded, saturated.			
27.5								
30.0	0.3				LIMESTONE (sw), pale yellow 2 5 1/2, fine to coarse grained, sand and shell fragments, well graded, saturated.			
32.5								
35.0	0.6			27-37				
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS			NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	<5%	
		31+	HARD					

Test Boring Report

BORING NO. MW-25D
PAGE 4 OF 6

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION		SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
35.0				27-37	LIMESTONE (sw), pale yellow 2.5 4 8/3, fine to coarse grained, shells, well graded, saturated.		
37.5					LIMESTONE (sw), as above		
40.0	0.7						
42.5				37-47			
45.1	1.2				LIMESTONE (sw), white 5 4 8/1, medium to coarse grained, few hard sections in core, shells & fossils, well graded, saturated.		
47.5							
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			TRACE	
		31+	HARD			<5%	

Test Boring Report

BORING NO. MW-25D
PAGE 5 OF 6

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS	
47.5				LIMESTONE (sw), white 54 8/1, medium to coarse grained, few hard sections in core; well graded, shells & fossils, saturated.	
49.7			47-52	LIMESTONE (sw), as above with trace hard sections in core	
50.0					
51.3					
52.5			52-62	LIMESTONE (sw), white 54 8/1, medium to coarse grained, few hard sections in core; well graded, shells & fossils, saturated.	
55.0					
56.3					
57.5			52-62	LIMESTONE (sw), as above.	
59.1					
60.0					

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

Test Boring Report

BORING NO. MW-25D
PAGE 6 OF 6

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS	
60	15			LIMESTONE (sw), white 54 8/1, medium to coarse grained, few hard sections, shells & fossils, well graded, saturated.	
62.5	2.8				
62.5	0.6			LIMESTONE (sw), as above	
65	0.8				
67.5	0.9			Boring terminated at 67 ft.	
68.5					
69.5					
70.5					
71.5					
72.5					
73.5					
74.5					
75.5					
76.5					
77.5					
78.5					
79.5					
80.5					
81.5					
82.5					
83.5					
84.5					
85.5					
86.5					
87.5					
88.5					
89.5					
90.5					
91.5					
92.5					
93.5					
94.5					
95.5					
96.5					
97.5					
98.5					
99.5					
100.5					
101.5					
102.5					
103.5					
104.5					
105.5					
106.5					
107.5					
108.5					
109.5					
110.5					
111.5					
112.5					
113.5					
114.5					
115.5					
116.5					
117.5					
118.5					
119.5					
120.5					
121.5					
122.5					
123.5					
124.5					
125.5					
126.5					
127.5					
128.5					
129.5					
130.5					
131.5					
132.5					
133.5					
134.5					
135.5					
136.5					
137.5					
138.5					
139.5					
140.5					
141.5					
142.5					
143.5					
144.5					
145.5					
146.5					
147.5					
148.5					
149.5					
150.5					
151.5					
152.5					
153.5					
154.5					
155.5					
156.5					
157.5					
158.5					
159.5					
160.5					
161.5					
162.5					
163.5					
164.5					
165.5					
166.5					
167.5					
168.5					
169.5					
170.5					
171.5					
172.5					
173.5					
174.5					
175.5					
176.5					
177.5					
178.5					
179.5					
180.5					
181.5					
182.5					
183.5					
184.5					
185.5					
186.5					
187.5					
188.5					
189.5					
190.5					
191.5					
192.5					
193.5					
194.5					
195.5					
196.5					
197.5					
198.5					
199.5					
200.5					
201.5					
202.5					
203.5					
204.5					
205.5					
206.5					
207.5					
208.5					
209.5					
210.5					
211.5					
212.5					
213.5					
214.5					
215.5					
216.5					
217.5					
218.5					
219.5					
220.5					
221.5					
222.5					
223.5					
224.5					
225.5					
226.5					
227.5					
228.5					
229.5					
230.5					
231.5					
232.5					
233.5					
234.5					
235.5					
236.5					
237.5					
238.5					
239.5					
240.5					
241.5					
242.5					
243.5					
244.5					
245.5					
246.5					
247.5					
248.5					
249.5					
250.5					
251.5					
252.5					
253.5					
254.5					
255.5					
256.5					
257.5					
258.5					
259.5					
260.5					
261.5					
262.5					
263.5					
264.5					
265.5					
266.5					
267.5					
268.5					
269.5					
270.5					
271.5					
272.5					
273.5					
274.5					
275.5					
276.5					
277.5					
278.5					
279.5					
280.5					
281.5					
282.5					
283.5					
284.5					
285.5					
286.5					
287.5					
288.5					
289.5					
290.5					
291.5					
292.5					
293.5					
294.5					
295.5					
296.5					
297.5					
298.5					
299.5					
300.5					
301.5					
302.5					
303.5					
304.5					
305.5					
306.5					
307.5					
308.5					
309.5					
310.5					
311.5					
312.5					
313.5					
314.5					
315.5					
316.5					
317.5					
318.5					
319.5					
320.5					
321.5					
322.5					
323.5					
324.5					
325.5					
326.5					
327.5					
328.5					
329.5					
330.5					
331.5					
332.5					
333.5					
334.5					
335.5					
336.5					
337.5					
338.5					
339.5					
340.5					
341.5					
342.5					
343.5					
344.5					
345.5					
346.5					
347.5					
348.5					
349.5					
350.5					
351.5					
352.5					
353.5					
354.5					
355.5					
356.5					
357.5					
358.5					
359.5					
360.5					
361.5					
362.5					
363.5					
364.5					
365.5					
366.5					
367.5					
368.5					
369.5					
370.5					
371.5					
372.5					
373.5					
374.5					
375.5					
376.5					
377.5					
378.5					
379.5					
380.5					
381.5					
382.5					
383.5					
384.5					
385.5					

Test Boring Report

BORING NO. MW-26D
PAGE 1 OF 5

PROJECT: UTC Delavan Spray Technologies Site
CLIENT: UTC
CONTRACTOR: SAEDACCO
EQUIPMENT: Geoprobe 8140 LS Sonic Rig

PROJECT NO: 60314964
LOCATION: _____
ELEVATION: _____
DATE START: 12/1/15
DATE FINISH: 12/1/15
DRILLER: W. Keives
PREPARED BY: C. Sublett

GROUND WATER		DEPTH TO:		CASING	SAMPLER	CORE BARREL		
DATE	HRS AFTER COMP	WATER	BOTTOM OF CASING	BOTTOM OF HOLE	TYPE		Acetate Liners	Core barrel
					SIZE ID			
					HAMMER WT			
					HAMMER FALL			
DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION		SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS			
2.5	1.0			0-7	SAND (sw), brownish yellow 10YR 6/6, fine to medium grained, well graded, damp CLAYEY SAND (sc), light gray 10YR 7/2 to strong brown 7.5YR 5/8, fine to medium grained, little clay, well graded, damp.			
5.0	0.8			7-17	SAND (sw), red 2.5YR 5/6 to light gray 10YR 7/2, layered colors, fine to medium grained, few clay, well graded, saturated SAND (sw) as above except fine to coarse grained			

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			<5%	
		31+	HARD				

Test Boring Report

BORING NO. MW-26 D
PAGE 2 OF 5

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	Sample Information	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS		
10.0				No recovery 10-17 ft.		
12.5			7-17			
15.0						
17.5				CLAY (CH), very pale brown 10 YR 2/3, with with thin red layers, medium stiff, few silt, high plasticity, wet		
20.0	0.0		17-27	CLAY (CH), brownish yellow 10 YR 6/8, medium stiff, few silt, high plasticity, wet.		
22.5				CLAYEY SAND (SC), brownish yellow 10 YR 6/8, fine to medium grained, well graded, little clay, saturated.		
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS	SPLIT SPOON	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST	SHELBY TUBE	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G	GRAB SAMPLE	UR NOT READ
31-50	DENSE	9-15	STIFF	MC	MACRO-CORE	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF			
		31+	HARD			

Test Boring Report

BORING NO. MW-26D
PAGE 3 OF 5

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	Sample Information	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS
22.5				CLAYEY SILT (MH), strong brown 7.5 4R 5/8, soft, little clay, low plasticity, moist
25.0	0.0		17-27	
27.5				LIMESTONE (sw), pale yellow 54 7/4, fine to coarse grained, sand and shell fragments, well graded, saturated.
30.0	0.2			LIMESTONE (sw), olive 54 4/3, fine to coarse grained, little cobble size cemented red zones, well graded, saturated. → to pale yellow above
32.5			27-42	LIMESTONE (sw), pale yellow 54 2/2, medium to coarse grained with large cemented zones, well graded, saturated
35.0	0.5			

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-26
PAGE 4 OF 5

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS	
35.0				LIMESTONE (sw) pale yellow 54 8/2, medium to coarse grained, with large cemented zones, well graded, saturated.	
37.5			27-42	LIMESTONE (sw), as above with some cemented fossils/shells	
40.0	0.6				
42.5				LIMESTONE (sw), pale yellow 2.54 8/3, medium to coarse grained with some cemented fossils/shells, well graded, saturated.	
45.0	0.4		42-52		
47.5					

BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	NOTES
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WD WHILE DRILLING
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%	
		31+	HARD			

Test Boring Report

BORING NO. MW-26D
PAGE 5 OF 5

DEPTH IN FEET	ORGANIC VAPOR SCREENING (PPM)	SAMPLE INFORMATION		SAMPLE DEPTH RANGE	FIELD CLASSIFICATION AND REMARKS			
47.5					LIMESTONE (sw), pale yellow 2.5 Y 8/3, medium to coarse grained, some cemented zones, well graded, saturated.			
50.0	0.5			42-52				
52.5					Boring terminated at 52 ft.			
55.0								
57.5								
60								
BLOWS/FT.	DENSITY	BLOWS/FT.	CONSISTENCY	SAMPLER ID.	DESCRIPTIONS	WD	NOTES	
0-4	VERY LOOSE	0-2	VERY SOFT	SS SPLIT SPOON	MOSTLY 50-100%	WHILE DRILLING		
5-10	LOOSE	3-4	SOFT	ST SHELBY TUBE	SOME 30-45%	NE NOT ENCOUNTERED		
11-30	MEDIUM DENSE	5-8	MEDIUM STIFF	G GRAB SAMPLE	LITTLE 15-25%	UR NOT READ		
31-50	DENSE	9-15	STIFF	MC MACRO-CORE	FEW 5-10%	NR NO RECOVERY		
50+	VERY DENSE	16-30	VERY STIFF		TRACE <5%			
		31+	HARD					

Water Well Record

Bureau of Water

2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300

1. WELL OWNER INFORMATION: Name: UTC Delavan Spray Technologies Site (last) (first) Address: 4334 Main Hwy City: Bamberg State: SC Zip: 29003 Telephone: Work: Home:		7. PERMIT NUMBER: _____
2. LOCATION OF WELL: COUNTY: Name: UTC Delavan Spray Technologies Site Street Address: 4334 Main Hwy City: Bamberg, SC Zip: 29003 Latitude: Longitude:		8. USE: <input type="checkbox"/> Residential <input type="checkbox"/> Public Supply <input type="checkbox"/> Process <input type="checkbox"/> Irrigation <input type="checkbox"/> Air Conditioning <input type="checkbox"/> Emergency <input type="checkbox"/> Test Well <input checked="" type="checkbox"/> Monitor Well <input type="checkbox"/> Replacement
9. WELL DEPTH (completed) 48' ft.		Date Started: 12-1-15 Date Completed: 12-1-15
10. CASING: <input type="checkbox"/> Threaded <input type="checkbox"/> Welded Diam.: _____ Type: <input type="checkbox"/> PVC <input type="checkbox"/> Galvanized <input type="checkbox"/> Steel <input type="checkbox"/> Other _____ in. to _____ ft. depth _____ in. to _____ ft. depth		Height: Above/below _____ Surface _____ ft. Weight _____ lb./ft. Drive Shoe? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
11. SCREEN: PVC Type: _____ Diam.: 2" Slot/Gauge: .10 Length: 10' Set Between: _____ ft. and _____ ft. _____ ft. and _____ ft. Sieve Analysis <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No		NOTE: MULTIPLE SCREENS USE SECOND SHEET
12. STATIC WATER LEVEL 4' ft. below land surface after 24 hours		
13. PUMPING LEVEL Below Land Surface. _____ ft. after _____ hrs. Pumping _____ G.P.M. Pumping Test: <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No Yield: _____		
14. WATER QUALITY Chemical Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Bacterial Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Please enclose lab results.		
15. ARTIFICIAL FILTER (filter pack) <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Installed from 36 ft. to 48 ft. Effective size 2a Uniformity Coefficient _____		
16. WELL GROUTED? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> Neat Cement <input type="checkbox"/> Bentonite <input checked="" type="checkbox"/> Bentonite/Cement <input type="checkbox"/> Other _____ Depth: From 0 ft. to 34 ft.		
17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: _____ ft. _____ direction Type _____ Well Disinfected <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Type: _____ Amount: _____		
18. PUMP: Date installed: _____ Not installed <input checked="" type="checkbox"/> Mfr. Name: _____ Model No.: _____ H.P. _____ Volts _____ Length of drop pipe _____ ft. Capacity _____ gpm TYPE: <input type="checkbox"/> Submersible <input type="checkbox"/> Jet (shallow) <input type="checkbox"/> Turbine <input type="checkbox"/> Jet (deep) <input type="checkbox"/> Reciprocating <input type="checkbox"/> Centrifugal		
19. WELL DRILLER: Will Keyes CERT. NO. 2092 Address: (Print) SAEDACCO 9088 Northfield Drive Telephone No.: (803) 548-2180 Fax No.: (803) 548-2181 20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief.		
Signed: <i>Will Keyes</i> Date: 12/7/2015 Well Driller		
6. TYPE: <input type="checkbox"/> Mud Rotary <input type="checkbox"/> Jetted <input checked="" type="checkbox"/> Bored <input type="checkbox"/> Dug <input type="checkbox"/> Air Rotary <input type="checkbox"/> Driven <input type="checkbox"/> Cable tool <input type="checkbox"/> Other		
If D Level Driller, provide supervising driller's name:		

**Water Well Record
Bureau of Water**

1. WELL OWNER INFORMATION: Name: UTC Delavan Spray Technologies Site (last) (first) Address: 4334 Main Hwy City: Bamberg State: SC Zip: 29003			7. PERMIT NUMBER: 8. USE: <input type="checkbox"/> Residential <input type="checkbox"/> Public Supply <input type="checkbox"/> Process <input type="checkbox"/> Irrigation <input type="checkbox"/> Air Conditioning <input type="checkbox"/> Emergency <input type="checkbox"/> Test Well <input type="checkbox"/> Monitor Well <input type="checkbox"/> Replacement		
Telephone: Work: Home:			9. WELL DEPTH (completed) Date Started: 12-1-15 62' ft. Date Completed: 12-1-15		
2. LOCATION OF WELL: COUNTY: Name: UTC Delavan Spray Technologies Site Street Address: 4334 Main Hwy City: Bamberg, SC Zip: 29003			10. CASING: <input type="checkbox"/> Threaded <input type="checkbox"/> Welded Diam.: _____ ft. Height: Above/Below _____ ft. Type: <input type="checkbox"/> PVC <input type="checkbox"/> Galvanized <input type="checkbox"/> Steel <input type="checkbox"/> Other _____ in. to _____ ft. depth _____ in. to _____ ft. depth		
Latitude: Longitude:			11. SCREEN: PVC Diam.: 2" Type: <input type="checkbox"/> PVC Diam.: 2" Slot/Gauge: .10 Length: 10' Set Between: _____ ft. and _____ ft. NOTE: MULTIPLE SCREENS _____ ft. and _____ ft. USE SECOND SHEET Sieve Analysis <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No		
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER: MW-25D MW-25D			12. STATIC WATER LEVEL 4' ft. below land surface after 24 hours		
4. ABANDONMENT: <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Give Details Below Grouted Depth: from _____ ft. to _____ ft.			13. PUMPING LEVEL Below Land Surface. ft. after _____ hrs. Pumping _____ G.P.M. Pumping Test: <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No Yield: _____		
Formation Description			*Thickness of Stratum	Depth to Bottom of Stratum	14. WATER QUALITY Chemical Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Bacterial Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Please enclose lab results.
see geologist's log					15. ARTIFICIAL FILTER (filter pack) <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Installed from 50 ft. to 62 ft. Effective size 2a Uniformity Coefficient _____
					16. WELL GROUTED? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> Neat Cement <input type="checkbox"/> Bentonite <input checked="" type="checkbox"/> Bentonite/Cement <input type="checkbox"/> Other _____ Depth: From 0 ft. to 48 ft.
					17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: _____ ft. direction Type _____
					18. PUMP: Date installed: _____ Not installed <input checked="" type="checkbox"/> Mfr. Name: _____ Model No: _____ H.P. _____ Volts _____ Length of drop pipe _____ ft. Capacity _____ gpm TYPE: <input type="checkbox"/> Submersible <input type="checkbox"/> Jet (shallow) <input type="checkbox"/> Turbine <input type="checkbox"/> Jet (deep) <input type="checkbox"/> Reciprocating <input type="checkbox"/> Centrifugal
					19. WELL DRILLER: Will Keyes CERT. NO.: 2092 Address: (Print) SAEDACCO 9088 Northfield Drive Level: A <input checked="" type="checkbox"/> B <input type="checkbox"/> C <input type="checkbox"/> D (circle one)
*Indicate Water Bearing Zones (Use a 2nd sheet if needed)			Telephone No.: (803) 548-2180 Fax No.: (803) 548-2181		
5. REMARKS:			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief.		
			<p><i>Will Keyes</i></p> <p>Signed: _____ Date: 12/7/2015 Well Driller</p>		
6. TYPE: <input type="checkbox"/> Mud Rotary <input type="checkbox"/> Jetted <input type="checkbox"/> Bored <input type="checkbox"/> Dug <input type="checkbox"/> Air Rotary <input type="checkbox"/> Driven <input type="checkbox"/> Cable tool <input type="checkbox"/> Other			If D Level Driller, provide supervising driller's name: _____		

**Water Well Record
Bureau of Water**

Water Well Record
Bureau of Water
2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300

1. WELL OWNER INFORMATION: Name: UTC Delavan Spray Technologies Site (last) (first) Address: 4334 Main Hwy City: Bamberg State: SC Zip: 29003 Telephone: Work Home:		7. PERMIT NUMBER: 8. USE: <input type="checkbox"/> Residential <input type="checkbox"/> Public Supply <input type="checkbox"/> Process <input type="checkbox"/> Irrigation <input type="checkbox"/> Air Conditioning <input type="checkbox"/> Emergency <input type="checkbox"/> Test Well <input checked="" type="checkbox"/> Monitor Well <input type="checkbox"/> Replacement	
2. LOCATION OF WELL: COUNTY: Name: UTC Delavan Spray Technologies Site Street Address: 4334 Main Hwy City: Bamberg, SC Zip: 29003 Latitude: Longitude:		9. WELL DEPTH (completed) Date Started: 12-1-15 15' ft. Date Completed: 12-1-15	
10. CASING: <input type="checkbox"/> Threaded <input type="checkbox"/> Welded Diam.: Type: <input type="checkbox"/> PVC <input type="checkbox"/> Galvanized <input type="checkbox"/> Steel <input type="checkbox"/> Other _____ in. to _____ ft. depth _____ in. to _____ ft. depth		Height: Above <input checked="" type="checkbox"/> Below Surface _____ ft. Weight _____ lb./ft. Drive Shoe? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	
11. SCREEN: PVC Type: _____ Diam.: 1" Slot/Gauge: -10 Length: 10' Set Between: _____ ft. and _____ ft. NOTE: MULTIPLE SCREENS _____ ft. and _____ ft. USE SECOND SHEET Sieve Analysis <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No			
12. STATIC WATER LEVEL 8' ft. below land surface after 24 hours		13. PUMPING LEVEL Below Land Surface. ft. after _____ hrs. Pumping _____ G.P.M. Pumping Test: <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No Yield: _____	
14. WATER QUALITY Chemical Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Bacterial Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Please enclose lab results.			
15. ARTIFICIAL FILTER (filter pack) <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Installed from 4 ft. to 15 ft. Effective size 2a Uniformity Coefficient _____			
16. WELL GROUTED? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> Neat Cement <input type="checkbox"/> Bentonite <input checked="" type="checkbox"/> Bentonite/Cement <input type="checkbox"/> Other _____ Depth: From 0 ft. to 3 ft.			
17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: _____ ft. _____ direction Type _____ Well Disinfected <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Type: _____ Amount: _____			
18. PUMP: Date installed: _____ Not installed <input checked="" type="checkbox"/> Mfr. Name: _____ Model No.: _____ H.P. _____ Volts _____ Length of drop pipe _____ ft. Capacity _____ gpm TYPE: <input type="checkbox"/> Submersible <input type="checkbox"/> Jet (shallow) <input type="checkbox"/> Turbine <input type="checkbox"/> Jet (deep) <input type="checkbox"/> Reciprocating <input type="checkbox"/> Centrifugal			
19. WELL DRILLER: Will Keyes CERT. NO. 2092 Address: (Print) SAEDACCO 9088 Northfield Drive Telephone No.: (803) 548-2180 Fax No.: (803) 548-2181 Level: A <input checked="" type="checkbox"/> B <input type="checkbox"/> C <input type="checkbox"/> D (circle one)			
20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief.			
5. REMARKS:		<p style="text-align: right;"><i>Will Keyes</i></p> <p>Signed: _____ Date: 12/7/2015 Well Driller</p>	
6. TYPE: <input type="checkbox"/> Mud Rotary <input type="checkbox"/> Jetted <input checked="" type="checkbox"/> Bored <input type="checkbox"/> Dug <input type="checkbox"/> Air Rotary <input type="checkbox"/> Driven <input type="checkbox"/> Cable tool <input type="checkbox"/> Other 			
If D Level Driller, provide supervising driller's name: _____			

**Water Well Record
Bureau of Water**

1. WELL OWNER INFORMATION: Name: UTC Delavan Spray Technologies Site (last) (first) Address: 4334 Main Hwy			7. PERMIT NUMBER: 8. USE: <input type="checkbox"/> Residential <input type="checkbox"/> Public Supply <input type="checkbox"/> Process <input type="checkbox"/> Irrigation <input type="checkbox"/> Air Conditioning <input type="checkbox"/> Emergency <input type="checkbox"/> Test Well <input checked="" type="checkbox"/> Monitor Well <input type="checkbox"/> Replacement		
City: Bamberg State: SC Zip: 29003 Telephone: Work: Home:			9. WELL DEPTH (completed) Date Started: 12-1-15 15' ft. Date Completed: 12-1-15		
2. LOCATION OF WELL: COUNTY: Name: UTC Delavan Spray Technologies Site Street Address: 4334 Main Hwy City: Bamberg, SC Zip: 29003 Latitude: Longitude:			10. CASING: <input type="checkbox"/> Threaded <input type="checkbox"/> Welded Diam.: _____ Type: <input type="checkbox"/> PVC <input type="checkbox"/> Galvanized <input type="checkbox"/> Steel <input type="checkbox"/> Other _____ in. to _____ ft. depth _____ in. to _____ ft. depth Height: Above/below _____ ft. Surface _____ lb./ft. Weight _____ Drive Shoe? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No		
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER: DPT-59 DPT-59			11. SCREEN: Type: PVC Diam.: 1" Slot/Gauge: .10 Length: 10' Set Between: _____ ft. and _____ ft. NOTE: MULTIPLE SCREENS _____ ft. and _____ ft. USE SECOND SHEET Sieve Analysis <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No		
4. ABANDONMENT: <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Give Details Below Grouted Depth: from _____ ft. to _____ ft.			12. STATIC WATER LEVEL 8' ft. below land surface after 24 hours		
Formation Description			13. PUMPING LEVEL Below Land Surface. ft. after _____ hrs. Pumping _____ G.P.M. Pumping Test: <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No Yield: _____		
see geologist's log			14. WATER QUALITY Chemical Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Bacterial Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Please enclose lab results.		
			15. ARTIFICIAL FILTER (filter pack) <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Installed from 4 ft. to 15 ft. Effective size 2a Uniformity Coefficient _____		
			16. WELL GROUTED? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> Neat Cement <input type="checkbox"/> Bentonite <input checked="" type="checkbox"/> Bentonite/Cement <input type="checkbox"/> Other _____ Depth: From 0 ft. to 3 ft.		
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: _____ ft. _____ direction Type _____ Well Disinfected <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Type: _____ Amount: _____		
			18. PUMP: Date installed: _____ Not installed <input checked="" type="checkbox"/> Mfr. Name: _____ Model No.: _____ H.P. _____ Volts _____ Length of drop pipe _____ ft. Capacity _____ gpm TYPE: <input type="checkbox"/> Submersible <input type="checkbox"/> Jet (shallow) <input type="checkbox"/> Turbine <input type="checkbox"/> Jet (deep) <input type="checkbox"/> Reciprocating <input type="checkbox"/> Centrifugal		
			19. WELL DRILLER: Will Keyes CERT. NO.: 2092 Address (Print): BAEDACCO 9088 Northfield Drive Level: A <input checked="" type="checkbox"/> B <input type="checkbox"/> C <input type="checkbox"/> D (circle one)		
*Indicate Water Bearing Zones (Use a 2nd sheet if needed)			Telephone No.: (803) 548-2180 Fax No.: (803) 548-2181		
5. REMARKS: Hand augered inside building			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief.		
			<p><i>Will Keyes</i></p> <p>Signed: _____ Date: 12/7/2015</p> <p>Well Driller</p>		
6. TYPE: <input type="checkbox"/> Mud Rotary <input type="checkbox"/> Jetted <input checked="" type="checkbox"/> Bored <input type="checkbox"/> Dug <input type="checkbox"/> Air Rotary <input type="checkbox"/> Driven <input type="checkbox"/> Cable tool <input type="checkbox"/> Other			If D Level Driller, provide supervising driller's name:		

Water Well Record
Bureau of Water
2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300

1. WELL OWNER INFORMATION: Name: UTC Delavan Spray Technologies Site (last) (first) Address: 4334 Main Hwy City: Bamberg State: SC Zip: 29003 Telephone: Work: Home:		7. PERMIT NUMBER: 8. USE: <input type="checkbox"/> Residential <input type="checkbox"/> Public Supply <input type="checkbox"/> Process <input type="checkbox"/> Irrigation <input type="checkbox"/> Air Conditioning <input type="checkbox"/> Emergency <input type="checkbox"/> Test Well <input checked="" type="checkbox"/> Monitor Well <input type="checkbox"/> Replacement	
2. LOCATION OF WELL: COUNTY: Name: UTC Delavan Spray Technologies Site Street Address: 4334 Main Hwy City: Bamberg, SC Zip: 29003 Latitude: Longitude:		9. WELL DEPTH (completed) Date Started: 12-1-15 10. CASING: <input type="checkbox"/> Threaded <input type="checkbox"/> Welded Diam: _____ Type: <input type="checkbox"/> PVC <input type="checkbox"/> Galvanized <input type="checkbox"/> Steel <input type="checkbox"/> Other _____ in. to _____ ft. depth _____ in. to _____ ft. depth	
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER: DPT-60 DPT-60		11. SCREEN: FVC Type: .10 Diam: 1" Slot/Gauge: .10 Length: 10' Set Between: _____ ft. and _____ ft. NOTE: MULTIPLE SCREENS _____ ft. and _____ ft. USE SECOND SHEET Sieve Analysis <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No	
4. ABANDONMENT: <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Give Details Below Grouted Depth: from _____ ft. to _____ ft.		12. STATIC WATER LEVEL 8' ft. below land surface after 24 hours	
Formation Description see geologist's log		13. PUMPING LEVEL Below Land Surface. ft. after _____ hrs. Pumping _____ GPM. Pumping Test: <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No Yield: _____	
		14. WATER QUALITY Chemical Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Bacterial Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Please enclose lab results.	
		15. ARTIFICIAL FILTER (filter pack) <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Installed from 4 ft. to 15 ft. Effective size 2a Uniformity Coefficient _____	
		16. WELL GROUTED? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> Neat Cement <input type="checkbox"/> Bentonite <input checked="" type="checkbox"/> Bentonite/Cement <input type="checkbox"/> Other _____ Depth: From 0 ft. to 3 ft.	
		17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: _____ ft. direction Type _____ Well Disinfected <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Type: _____ Amount: _____	
		18. PUMP: Date installed: _____ Not installed <input checked="" type="checkbox"/> Mfr. Name: _____ Model No.: _____ H.P. _____ Volts _____ Length of drop pipe _____ ft. Capacity _____ gpm TYPE: <input type="checkbox"/> Submersible <input type="checkbox"/> Jet (shallow) <input type="checkbox"/> Turbine <input type="checkbox"/> Jet (deep) <input type="checkbox"/> Reciprocating <input type="checkbox"/> Centrifugal	
		19. WELL DRILLER: Will Keyes CERT. NO. 2092 Address: (Print) SAEDACCO 9088 Northfield Drive Telephone No.: (803) 548-2180 Fax No.: (803) 548-2181	
5. REMARKS: Hand augered inside building		20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief. <i>Will Keyes</i> Signed: _____ Date: 12/7/2015 Well Driller	
6. TYPE: <input type="checkbox"/> Mud Rotary <input type="checkbox"/> Jetted <input checked="" type="checkbox"/> Bored <input type="checkbox"/> Dug <input type="checkbox"/> Air Rotary <input type="checkbox"/> Driven <input type="checkbox"/> Cable tool <input type="checkbox"/> Other			
If D Level Driller, provide supervising driller's name: _____			

Water Well Record

Bureau of Water

2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300

1. WELL OWNER INFORMATION: Name: UTC Delavan Spray Technologies Site (last) (first) Address: 4334 Main Hwy City: Bamberg State: SC Zip: 29003 Telephone: Work: Home:		7. PERMIT NUMBER: UTC Delavan Spray Technologies Site
2. LOCATION OF WELL: COUNTY: Name: UTC Delavan Spray Technologies Site Street Address: 4334 Main Hwy City: Bamberg, SC Zip: 29003 Latitude: Longitude:		8. USE: <input type="checkbox"/> Residential <input type="checkbox"/> Irrigation <input type="checkbox"/> Test Well <input type="checkbox"/> Public Supply <input type="checkbox"/> Air Conditioning <input type="checkbox"/> Monitor Well <input type="checkbox"/> Process <input type="checkbox"/> Emergency <input type="checkbox"/> Replacement
		9. WELL DEPTH (completed) Date Started: 12-1-15 15' ft. Date Completed: 12-1-15
		10. CASING: <input type="checkbox"/> Threaded <input type="checkbox"/> Welded Diam.: _____ Type: <input type="checkbox"/> PVC <input type="checkbox"/> Galvanized <input type="checkbox"/> Steel <input type="checkbox"/> Other _____ in. to _____ ft. depth _____ in. to _____ ft. depth Height: Above/below Surface _____ ft. Weight _____ lb./ft. Drive Shoe? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
3. PUBLIC SYSTEM NAME: PUBLIC SYSTEM NUMBER: DPT-61 DPT-61		11. SCREEN: PVC Diam.: 1" Type: .10 Slot/Gauge: 10' Length: _____ Set Between: _____ ft. and _____ ft. NOTE: MULTIPLE SCREENS _____ ft. and _____ ft. USE SECOND SHEET Sieve Analysis <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No
4. ABANDONMENT: <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Give Details Below Grouted Depth: from _____ ft. to _____ ft.		12. STATIC WATER LEVEL 8' ft. below land surface after 24 hours
		13. PUMPING LEVEL Below Land Surface. _____ ft. after _____ hrs. Pumping _____ G.P.M. Pumping Test: <input type="checkbox"/> Yes (please enclose) <input checked="" type="checkbox"/> No Yield: _____
		14. WATER QUALITY Chemical Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Bacterial Analysis <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Please enclose lab results.
		15. ARTIFICIAL FILTER (filter pack) <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Installed from 4 ft. to 15 ft. Effective size 2a Uniformity Coefficient _____
		16. WELL GROUTED? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> Neat Cement <input type="checkbox"/> Bentonite <input checked="" type="checkbox"/> Bentonite/Cement <input type="checkbox"/> Other _____ Depth: From 0 ft. to 3 ft.
		17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: _____ ft. _____ direction Type _____ Well Disinfected <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No Type: _____ Amount: _____
		18. PUMP: Date installed: _____ Not installed <input checked="" type="checkbox"/> Mfr. Name: _____ Model No.: _____ H.P. _____ Volts _____ Length of drop pipe _____ ft. Capacity _____ gpm TYPE: <input type="checkbox"/> Submersible <input type="checkbox"/> Jet (shallow) <input type="checkbox"/> Turbine <input type="checkbox"/> Jet (deep) <input type="checkbox"/> Reciprocating <input type="checkbox"/> Centrifugal
		19. WELL DRILLER: Will Keyes CERT. NO. 2092 Address: (Print) SAEDACCO 9088 Northfield Drive Telephone No.: (803) 548-2180 Fax No.: (803) 548-2181 20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under my direction and this report is true to the best of my knowledge and belief.
		Signed: <i>Will Keyes</i> Date: 12/7/2015 Well Driller
		If D Level Driller, provide supervising driller's name:
5. REMARKS: Hand augered inside building		
6. TYPE: <input type="checkbox"/> Mud Rotary <input type="checkbox"/> Jetted <input checked="" type="checkbox"/> Bored <input type="checkbox"/> Dug <input type="checkbox"/> Air Rotary <input type="checkbox"/> Driven <input type="checkbox"/> Cable tool <input type="checkbox"/> Other		

AECOM

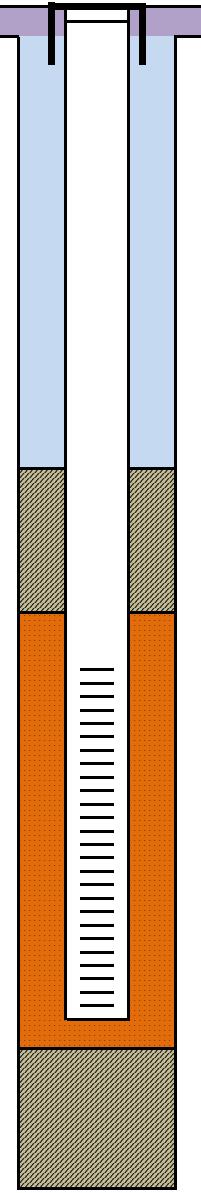
Shallow Monitoring Well Construction Details

PROJECT: UTC Delavan Spray Technologies Site
LOCATION: Bamberg, SC
CLIENT: United Technologies
CONTRACTOR: SAEDACCO
DRILLER: W. Keyes
FIELD REPRESENTATIVE: C. Suddeth

WELL NUMBER: MW-24
JOB NUMBER: 60314964
TYPE OF INSTALLATION: Monitoring Well
LOCATION: West of Plant Building
INSTALLATION DATE: 12/03/15

SURVEY DATUM: SC State Plane, NAVD 88 (Vertical)
NAD 83 (Horizontal)

NORTHING: 527,332.95


TOP OF CASING ELEVATION: 147.85 ft

EASTING: 1,985,487.59

GROUND SURFACE ELEVATION: 148.52 ft

CASING STICKUP: -0.67 feet

CONCRETE PAD

COMMENTS:

TYPE OF ANNULAR SEAL 30% Solids Bentonite

TYPE OF WELL CASING OR RISER Sch. 40 PVC
INSIDE DIAMETER 2.0 inch

NOMINAL BOREHOLE DIAMETER 6.0 inch

TOP OF WELL SEAL 3.5 feet

TYPE OF WELL SEAL Bentonite Chips

TOP OF SAND FILTER PACK 5.0 feet

TOP OF SCREENED INTERVAL 6.0 feet

TYPE OF SCREEN PVC

SLOT SIZE 0.010 inch

INSIDE DIAMETER 2.0 inch

SCREEN LENGTH 15.0 feet

FILTER PACK AROUND SCREEN No. 2 sand

BOTTOM OF WELL 21.0 feet

TOP OF BOREHOLE SEAL 22.0 feet

TYPE OF SEAL Bentonite Chips

BOTTOM OF BOREHOLE 27 feet

NOTE: ALL DEPTHS ARE REFERENCED TO GROUND SURFACE
DIAGRAM NOT TO SCALE

AECOM

Shallow Monitoring Well Construction Details

PROJECT: UTC Delavan Spray Technologies Site
LOCATION: Bamberg, SC
CLIENT: United Technologies
CONTRACTOR: SAEDACCO
DRILLER: W. Keyes
FIELD REPRESENTATIVE: C. Suddeth

WELL NUMBER: MW-25D
JOB NUMBER: 60314964
TYPE OF INSTALLATION: Monitoring Well
LOCATION: Approx. 1,300' southwest of plant
INSTALLATION DATE: 12/02/15

SURVEY DATUM: SC State Plane, NAVD 88 (Vertical)
NAD 83 (Horizontal)

NORTHING: 525,988.09

TOP OF CASING ELEVATION: 139.21 ft

EASTING: 1,985,257.31

GROUND SURFACE ELEVATION: 139.30 ft

CASING STICKUP: -0.09 feet

CONCRETE PAD

COMMENTS:

TYPE OF ANNULAR SEAL 30% Solids Bentonite

TYPE OF WELL CASING OR RISER Sch. 40 PVC
INSIDE DIAMETER 2.0 inch

NOMINAL BOREHOLE DIAMETER 6.0 inch

TOP OF WELL SEAL 47.0 feet

TYPE OF WELL SEAL Bentonite Chips

TOP OF SAND FILTER PACK 50.0 feet

TOP OF SCREENED INTERVAL 52.0 feet

TYPE OF SCREEN PVC

SLOT SIZE 0.010 inch

INSIDE DIAMETER 2.0 inch

SCREEN LENGTH 10.0 feet

FILTER PACK AROUND SCREEN No. 2 sand

BOTTOM OF WELL 62.0 feet

TOP OF BOREHOLE SEAL 64.0 feet

TYPE OF SEAL Bentonite Chips

NOTE: ALL DEPTHS ARE REFERENCED TO GROUND SURFACE
DIAGRAM NOT TO SCALE

BOTTOM OF BOREHOLE 67 feet

AECOM

Shallow Monitoring Well Construction Details

PROJECT: UTC Delavan Spray Technologies Site
LOCATION: Bamberg, SC
CLIENT: United Technologies
CONTRACTOR: SAEDACCO
DRILLER: W. Keyes
FIELD REPRESENTATIVE: C. Suddeth

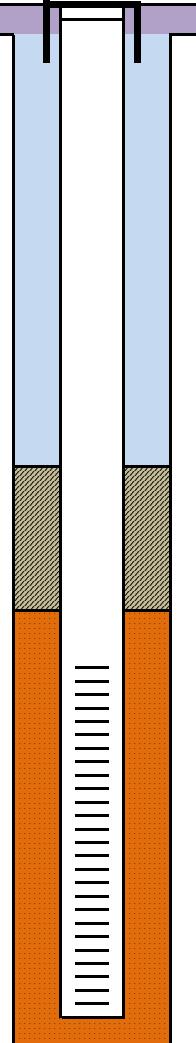
WELL NUMBER: MW-26D
JOB NUMBER: 60314964
TYPE OF INSTALLATION: Monitoring Well
LOCATION: Approx. 1,750' south of plant
INSTALLATION DATE: 12/01/15

SURVEY DATUM: SC State Plane, NAVD 88 (Vertical)
NAD 83 (Horizontal)

NORTHING: 525,547.18

TOP OF CASING ELEVATION: 143.64 ft

EASTING: 1,985,631.39


GROUND SURFACE ELEVATION:

143.83 ft

CASING STICKUP:

-0.19

COMMENTS:

TYPE OF ANNULAR SEAL Neat Cement

TYPE OF WELL CASING OR RISER Sch. 40 PVC
INSIDE DIAMETER 2.0 inch

NOMINAL BOREHOLE DIAMETER 6.0 inch

TOP OF WELL SEAL 33.0 feet

TYPE OF SEAL Bentonite Chips

TOP OF SAND FILTER PACK 36.0 feet

TOP OF SCREENED INTERVAL 38.0 feet

TYPE OF SCREEN PVC

SLOT SIZE 0.010 inch

INSIDE DIAMETER 2.0 inch

SCREEN LENGTH 10.0 feet

FILTER PACK AROUND SCREEN No. 2 sand

BOTTOM OF WELL 48.0 feet

BOTTOM OF BOREHOLE 52.0 feet

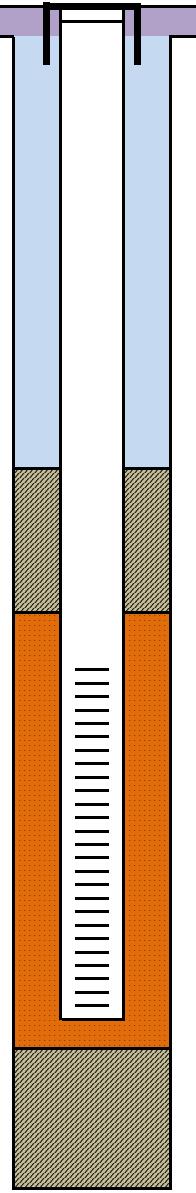
NOTE: ALL DEPTHS ARE REFERENCED TO GROUND SURFACE
DIAGRAM NOT TO SCALE

AECOM

Shallow Monitoring Well Construction Details

PROJECT: UTC Delavan Spray Technologies Site
LOCATION: Bamberg, SC
CLIENT: United Technologies
CONTRACTOR: SAEDACCO
DRILLER: W. Keyes
FIELD REPRESENTATIVE: L. Alexander

WELL NUMBER: DPT-58
JOB NUMBER: 60314964
TYPE OF INSTALLATION:
1-inch pre-pack monitoring point
LOCATION: Outside the building north of wickman room
INSTALLATION DATE: 12/01/15


SURVEY DATUM: SC State Plane, NAVD 88 (Vertical)
NAD 83 (Horizontal)
TOP OF CASING ELEVATION: 148.02 ft

NORTHING: 527,478.86
EASTING: 1,985,775.68

GROUND SURFACE ELEVATION: 148.31 ft

CASING STICKUP: -0.29 feet

CONCRETE PAD

COMMENTS:

TYPE OF ANNULAR SEAL: 30% Solids Bentonite

TYPE OF WELL CASING OR RISER: Sch. 40 PVC
INSIDE DIAMETER: 1.0 inch

NOMINAL BOREHOLE DIAMETER: 3.0 inch

TOP OF WELL SEAL: 3.0 feet

TYPE OF WELL SEAL: Bentonite Chips

TOP OF SAND FILTER PACK: 4.0 feet

TOP OF SCREENED INTERVAL: 5.0 feet

TYPE OF SCREEN: PVC

SLOT SIZE: 0.010 inch

INSIDE DIAMETER: 1.0 inch

SCREEN LENGTH: 10.0 feet

FILTER PACK AROUND SCREEN:
pre-pack well screen
w/ No. 2a sand
backfill as needed

BOTTOM OF WELL: 15.0 feet

TOP OF BOREHOLE SEAL: NA feet

TYPE OF SEAL: NA

BOTTOM OF BOREHOLE: 16 feet

NOTE: ALL DEPTHS ARE REFERENCED TO GROUND SURFACE
DIAGRAM NOT TO SCALE

AECOM

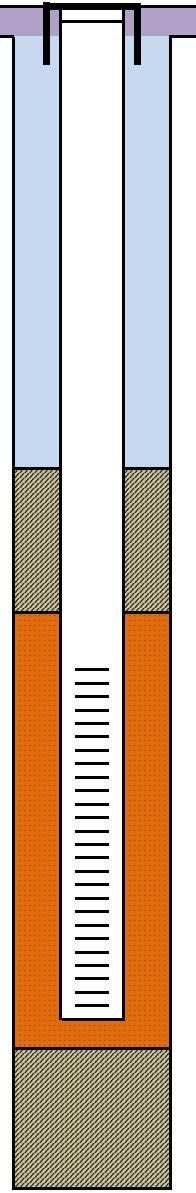
Shallow Monitoring Well Construction Details

PROJECT: UTC Delavan Spray Technologies Site
LOCATION: Bamberg, SC
CLIENT: United Technologies
CONTRACTOR: SAEDACCO
DRILLER: W. Keyes
FIELD REPRESENTATIVE: L. Alexander

WELL NUMBER: DPT-59
JOB NUMBER: 60314964
TYPE OF INSTALLATION:
1-inch pre-pack monitoring point
LOCATION: near the emergency exit in the Wickman room
INSTALLATION DATE: 12/02/15

SURVEY DATUM: SC State Plane, NAVD 88 (Vertical)
NAD 83 (Horizontal)

NORTHING: 527,457.60


TOP OF CASING ELEVATION: 148.24 ft

EASTING: 1,985,752.80

GROUND SURFACE ELEVATION: 148.53 ft

CASING STICKUP: -0.29 feet

CONCRETE PAD

COMMENTS:

TYPE OF ANNULAR SEAL: 30% Solids Bentonite

TYPE OF WELL CASING OR RISER: Sch. 40 PVC
INSIDE DIAMETER: 1.0 inch

NOMINAL BOREHOLE DIAMETER: 3.0 inch

TOP OF WELL SEAL: 3.0 feet

TYPE OF WELL SEAL: Bentonite Chips

TOP OF SAND FILTER PACK: 4.0 feet

TOP OF SCREENED INTERVAL: 5.0 feet

TYPE OF SCREEN: PVC

SLOT SIZE: 0.010 inch

INSIDE DIAMETER: 1.0 inch

SCREEN LENGTH: 10.0 feet

FILTER PACK AROUND SCREEN:
pre-pack well screen
w/ No. 2a sand
backfill as needed

BOTTOM OF WELL: 15.0 feet

TOP OF BOREHOLE SEAL: NA feet

TYPE OF SEAL: NA

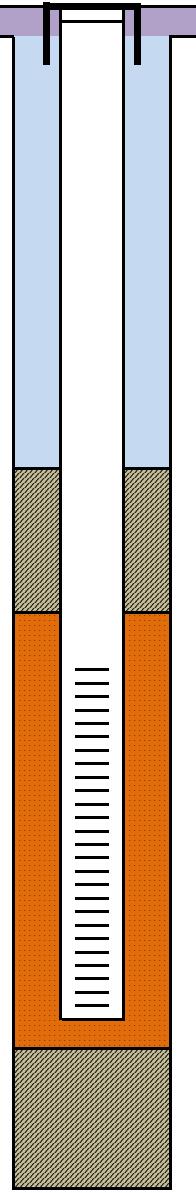
BOTTOM OF BOREHOLE: 15 feet

NOTE: ALL DEPTHS ARE REFERENCED TO GROUND SURFACE
DIAGRAM NOT TO SCALE

Shallow Monitoring Well Construction Details

PROJECT: UTC Delavan Spray Technologies Site
 LOCATION: Bamberg, SC
 CLIENT: United Technologies
 CONTRACTOR: SAEDACCO
 DRILLER: W. Keyes
 FIELD REPRESENTATIVE: L. Alexander

WELL NUMBER: DPT-60
 JOB NUMBER: 60314964
 TYPE OF INSTALLATION: 1-inch pre-pack monitoring point
 LOCATION: in the Wickman room betw. MW-19 & DPT59
 INSTALLATION DATE: 12/02/15


SURVEY DATUM: SC State Plane, NAVD 88 (Vertical)
 NAD 83 (Horizontal)
 TOP OF CASING ELEVATION: 148.31 ft

NORTHING: 527,453.36
 EASTING: 1,985,770.99

GROUND SURFACE ELEVATION: 148.53 ft

CASING STICKUP: -0.22 feet

CONCRETE PAD

COMMENTS:

TYPE OF ANNULAR SEAL 30% Solids Bentonite

TYPE OF WELL CASING OR RISER Sch. 40 PVC
 INSIDE DIAMETER 1.0 inch

NOMINAL BOREHOLE DIAMETER 3.0 inch

TOP OF WELL SEAL 3.0 feet

TYPE OF WELL SEAL Bentonite Chips

TOP OF SAND FILTER PACK 4.0 feet

TOP OF SCREENED INTERVAL 5.0 feet

TYPE OF SCREEN PVC

SLOT SIZE 0.010 inch

INSIDE DIAMETER 1.0 inch

SCREEN LENGTH 10.0 feet

FILTER PACK AROUND SCREEN pre-pack well screen
 w/ No. 2a sand
 backfill as needed

BOTTOM OF WELL 15.0 feet

TOP OF BOREHOLE SEAL NA feet

TYPE OF SEAL NA

BOTTOM OF BOREHOLE 15 feet

NOTE: ALL DEPTHS ARE REFERENCED TO GROUND SURFACE
 DIAGRAM NOT TO SCALE

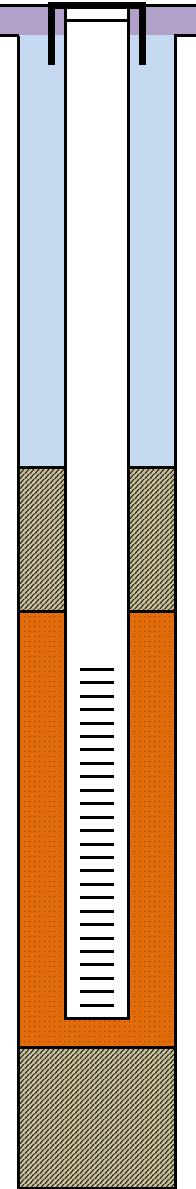
Shallow Monitoring Well Construction Details

PROJECT: UTC Delavan Spray Technologies Site
 LOCATION: Bamberg, SC
 CLIENT: United Technologies
 CONTRACTOR: SAEDACCO
 DRILLER: W. Keyes
 FIELD REPRESENTATIVE: L. Alexander

WELL NUMBER: DPT-61
 JOB NUMBER: 60314964
 TYPE OF INSTALLATION: 1-inch pre-pack monitoring point
 near the former PCE degreaser in the
 LOCATION: wickman room
 INSTALLATION DATE: 12/02/15

SURVEY DATUM: SC State Plane, NAVD 88 (Vertical)
 NAD 83 (Horizontal)
 TOP OF CASING ELEVATION: 147.99 ft

NORTHING: 527,446.95
 EASTING: 1,985,784.57


GROUND SURFACE ELEVATION: 148.44 ft

CASING STICKUP: -0.45 feet

CONCRETE PAD

COMMENTS:

TYPE OF ANNULAR SEAL 30% Solids
 Bentonite

TYPE OF WELL CASING OR RISER Sch. 40 PVC
 INSIDE DIAMETER 1.0 inch

NOMINAL BOREHOLE DIAMETER 3.0 inch

TOP OF WELL SEAL 3.0 feet

TYPE OF WELL SEAL Bentonite Chips

TOP OF SAND FILTER PACK 4.0 feet

TOP OF SCREENED INTERVAL 5.0 feet

TYPE OF SCREEN PVC

SLOT SIZE 0.010 inch

INSIDE DIAMETER 1.0 inch

SCREEN LENGTH 10.0 feet

FILTER PACK AROUND SCREEN pre-pack well screen
 w/ No. 2a sand
 backfill as needed

BOTTOM OF WELL 15.0 feet

TOP OF BOREHOLE SEAL NA feet

TYPE OF SEAL NA

BOTTOM OF BOREHOLE 15 feet

NOTE: ALL DEPTHS ARE REFERENCED TO GROUND SURFACE
 DIAGRAM NOT TO SCALE

Monitoring Well Development Log

Page 1 of 1

Date Started (yr/mo/day) 2015-12-4 Date Completed (yr/mo/day) 2015-12-4
 Field Personnel Randy Margo
 Site Name UTC Delavan Spray Technologies Site
 Job # 60314964
 Well ID # MW-24
 _____ Upgradient _____ Downgradient
 Weather Conditions mostly sunny
 Air Temperature 40-50's °F

Total Well Depth (TWD) = 21.00 1/100 ft
 Depth to Ground Water (DGW) = 12.42 1/100 ft
 Length of Water Column (LWC) = TWD - DGW = 8.58 1/100 ft
 1 Casing Volume (OCV) = LWC x 0.16 = 1.39 gallons
 5 Casing Volumes = 6.99 gallons
 Method of Well Development graveler pump / bather
 Equipment Used graveler pump / bather
 Total Volume of Water Removed 25.5 gallons

Date/Time <u>124415</u>	Discharge Rate (ml/min)	Volume Purged (gallons)	Water Temp. (°C)	Specific Conductivity (ms/cm)	DO (mg/L)	pH	ORP (mV)	Turbidity/Color	Sand Content (%)	Remarks
0730	1.0	initial	—	—	—	—	—	71100 yellow		Scoured
0740	.5	10	19.15	0.135	7.40	7.40	787	1080		Scoured
0805	12	19.90	0.140	7.53	7.01	702	789.8			
0820	14.5	19.13	0.100	7.82	6.89	77.4	935.4			bather dry
0900	18.0	18.55	0.077	7.39	6.81	102.4	657.5			bather dry
0923	20.5	19.30	0.083	7.57	6.62	100.9	813.4			bather dry
0940	23.0	19.28	0.072	7.04	6.53	99.7	798.5			bather dry
1000	25.5	18.98	0.069	7.43	6.49	66.6	845.4			bather dry

COMMENTS/OBSERVATIONS: 0742 pump stopped - pulled pump cleaned
0755 restarted 0758 stopped again
0803 restarted 0805 dry filled pump used bather low yield

Monitoring Well Development Log

Page 1 of 1

Date Started (yr/mo/day) 2015-12-3 Date Completed (yr/mo/day) 2015-12-3
 Field Personnel Randy Morgan
 Site Name UTC Delavan Spray Technologies Site
 Job # 60314964
 Well ID # MW-250
 _____ Upgradient _____ Downgradient
 Weather Conditions Cloudy
 Air Temperature 50.5 °F

Total Well Depth (TWD) = 65.42 TOC 63.12 BGS 1/100 ft
 Depth to Ground Water (DGW) = 7.05 1/100 ft
 Length of Water Column (LWC) = TWD - DGW = 58.37 1/100 ft
 1 Casing Volume (OCV) = LWC x 0.16 = 9.57 gallons
 5 Casing Volumes = 47.57 gallons
 Method of Well Development gravel bypass - surgery
 Equipment Used gravel bypass
 Total Volume of Water Removed 150 gallons

Date/Time	Discharge Rate (ml/min)	Volume Purged (gallons)	Water Temp. (°C)	Specific Conductivity (ms/cm)	DO (mg/L)	pH	ORP (mV)	Turbidity/Color	Sand Content (%)	Remarks
<u>12-03-15</u>										
<u>1150</u>	<u>1.5</u>	<u>initial</u>	<u>—</u>	<u>—</u>	<u>—</u>	<u>—</u>	<u>—</u>	<u>4.8m 71100</u>	<u>0</u>	<u>Surged</u>
<u>1210</u>	<u>1.5</u>	<u>30</u>	<u>18.92</u>	<u>0.251</u>	<u>2.22</u>	<u>8.07</u>	<u>-9.2</u>	<u>4.8m 1221</u>	<u>0</u>	<u>Surged</u>
<u>1220</u>	<u>1.5</u>	<u>45</u>	<u>18.52</u>	<u>0.257</u>	<u>2.30</u>	<u>7.90</u>	<u>+0.8</u>	<u>44.5.8 4.8m</u>	<u>0</u>	<u>Surged</u>
<u>1230</u>	<u>1.5</u>	<u>60</u>	<u>19.48</u>	<u>0.260</u>	<u>2.50</u>	<u>7.85</u>	<u>+10.1</u>	<u>400.0 milky</u>	<u>0</u>	<u>Surged</u>
<u>1240</u>	<u>1.5</u>	<u>75</u>	<u>19.43</u>	<u>0.260</u>	<u>2.54</u>	<u>7.81</u>	<u>+19.1</u>	<u>371.3 milky</u>	<u>0</u>	<u>Surged</u>
<u>1250</u>	<u>1.5</u>	<u>90</u>	<u>19.60</u>	<u>0.262</u>	<u>2.72</u>	<u>7.77</u>	<u>+25.1</u>	<u>213.2 milky</u>	<u>0</u>	<u>Surged</u>
<u>1300</u>	<u>1.5</u>	<u>105</u>	<u>19.21</u>	<u>0.263</u>	<u>2.53</u>	<u>7.75</u>	<u>+25.6</u>	<u>266.3 milky</u>	<u>0</u>	<u>Surged</u>
<u>1310</u>	<u>1.5</u>	<u>120</u>	<u>19.51</u>	<u>0.263</u>	<u>2.58</u>	<u>7.70</u>	<u>+28.8</u>	<u>87.59 Slight</u>	<u>0</u>	
<u>1320</u>	<u>1.5</u>	<u>135</u>	<u>19.66</u>	<u>0.264</u>	<u>2.64</u>	<u>7.68</u>	<u>+34.1</u>	<u>19.23 clear</u>	<u>0</u>	
<u>1330</u>	<u>1.5</u>	<u>150</u>	<u>19.54</u>	<u>0.265</u>	<u>2.75</u>	<u>7.70</u>	<u>+33.3</u>	<u>12.23 clear</u>	<u>0</u>	

COMMENTS/OBSERVATIONS: _____

Monitoring Well Development Log

Page 1 of 2

Date Started (yr/mo/day)	<u>2015-12-3</u>	Date Completed (yr/mo/day)	<u>2015-12-3</u>
Field Personnel	<u>Randy Morgan</u>		
Site Name	UTC Delavan Spray Technologies Site		
Job #	<u>60314964</u>		
Well ID #	<u>MW-26D</u>		
Upgradient	<input type="checkbox"/>	Downgradient	<input type="checkbox"/>
Weather Conditions	<u>Cloudy</u>		
Air Temperature	<u>50°</u> °F		

Total Well Depth (TWD) =	<u>48.92</u>	1/100 ft
Depth to Ground Water (DGW) =	<u>10.13</u>	1/100 ft
Length of Water Column (LWC) = TWD - DGW =	<u>38.79</u>	1/100 ft
1 Casing Volume (OCV) = LWC x <u>0.16</u> =	<u>6.32</u>	gallons
5 Casing Volumes =	<u>31.61</u>	gallons
Method of Well Development	<u>grind for pump / surging</u>	
Equipment Used	<u>grind for pump</u>	
Total Volume of Water Removed	<u>RM 55 144</u>	gallons

Date/Time	Discharge Rate (ml/min)	Volume Purged (gallons)	Water Temp. (°C)	Specific Conductivity (ms/cm)	DO (mg/L)	pH	ORP (mV)	Turbidity/Color	Sand Content (%)	Remarks
<u>12-3-15</u>	<u>initial</u>	<u>initial</u>	—	—	—	—	—	—	—	<u>Surged</u>
<u>0920</u>	<u>1.2</u>	<u>12.0</u>	<u>18.05</u>	<u>0.277</u>	<u>2.99</u>	<u>7.85</u>	<u>91.3</u>	<u>765.2</u> pale yellow	<u>0</u>	<u>Surged</u>
<u>0930</u>	<u>1.2</u>	<u>24.0</u>	<u>18.58</u>	<u>0.270</u>	<u>2.65</u>	<u>7.72</u>	<u>84.2</u>	<u>349.3</u> pale yellow	<u>0</u>	<u>Surged</u>
<u>0940</u>	<u>1.2</u>	<u>36.0</u>	<u>18.99</u>	<u>0.268</u>	<u>2.47</u>	<u>7.65</u>	<u>83.9</u>	<u>306.0</u> 1	<u>0</u>	<u>Surged</u>
<u>1000</u>	<u>1.2</u>	<u>48.0</u>	<u>18.98</u>	<u>0.268</u>	<u>2.63</u>	<u>7.64</u>	<u>84.6</u>	<u>230.3</u>	<u>0</u>	<u>Surged</u>
<u>1010</u>	<u>1.2</u>	<u>60.0</u>	<u>18.73</u>	<u>0.270</u>	<u>2.90</u>	<u>7.64</u>	<u>81.9</u>	<u>215.8</u>	<u>0</u>	<u>Surged</u>
<u>1020</u>	<u>1.2</u>	<u>72.0</u>	<u>19.09</u>	<u>0.268</u>	<u>2.69</u>	<u>7.59</u>	<u>81.4</u>	<u>198.9</u>	<u>0</u>	<u>Surged</u>
<u>1030</u>	<u>1.2</u>	<u>84.0</u>	<u>19.02</u>	<u>0.270</u>	<u>2.93</u>	<u>7.56</u>	<u>81.2</u>	<u>255.0</u>	<u>0</u>	<u>Surged</u>
<u>1040</u>	<u>1.2</u>	<u>96.0</u>	<u>19.06</u>	<u>0.268</u>	<u>2.86</u>	<u>7.52</u>	<u>79.2</u>	<u>175.4</u>	<u>0</u>	
<u>1050</u>	<u>1.2</u>	<u>108.0</u>	<u>19.05</u>	<u>0.267</u>	<u>2.75</u>	<u>7.53</u>	<u>79.2</u>	<u>82.55</u>	<u>0</u>	
<u>1100</u>	<u>1.2</u>	<u>120.0</u>	<u>19.21</u>	<u>0.268</u>	<u>2.61</u>	<u>7.56</u>	<u>79.9</u>	<u>69.06</u> 1	<u>0</u>	

COMMENTS/OBSERVATIONS: _____

Monitoring Well Development Log

Page 2 of 2

Date Started (yr/mo/day) 2015-12-3 Date Completed (yr/mo/day) 2015-12-3
Field Personnel Randy Morge
Site Name UTC Delavan Spray Technologies Site
Job # 60314964
Well ID # MW-260

COMMENTS/OBSERVATIONS:

FIELD DATA LOG FOR GROUNDWATER SAMPLING

Page 1 of 1

Date (mo/day/yr)	Dec - 4 - 2015		
Field Personnel	Randy Morgen		
Site Name	UTC Delavan Spray Technologies Site, Bamberg, SC		
AECOM Job #	60314964		
Sample ID	MW-24		
Upgradient	Downgradient	Sidegradient	Source
Weather Conditions	Clear / sunny		
Air Temperature	50°5		
Total Well Depth (TWD) =	21.00		
Depth to Ground Water (DGW) =	12.49		
Length of Water Column (LWC) = TWD - DGW =	8.51		
1 Casing Volume (OCV) = LWC x	$1.63 = 1.38$ gal		
3 Casing Volumes =	4.16 gal = Standard Evacuation Volume		
Method of Sample Evacuation	Purging with a peristaltic pump		
Method of Sample Collection	peristaltic pump; reverse flow for VOCs		
Total Volume of Water Removed	gal		

Casing Diameter	2.0		inches
Casing Material	PVC		
Measuring Point Elevation			1/100 ft
Height of Riser (above land surface)			1/100 ft
Land Surface Elevation			1/100 ft
Screened Interval	11- 21		1/100 ft
Dedicated Pump or Bailer	YES	NO	Type
Steel Guard Pipe Around Casing	YES	NO	
Locking Cap	YES	NO	
Protective Post/Abutment	YES	NO	
Well Integrity Satisfactory	YES	NO	
Yield	LOW	MODERATE	HIGH
Comments/Observations	Sample Time: 1329 QA/QC: none		
Sample Analytes:	VOC's PID 3.0 well head 0.0 Breathing zone		

	FIELD ANALYSES							
	initial	0.40	0.80	1.20	1.60	2.0	2.4	2.8
VOLUME PURGED (gallons)	1250	1253	1300	1305	1310	1315	1320	1325
TIME (Military)	12:20	12:20	12:20	12:20	12:20	12:20	12:20	12:20
Water Level (ft. BTOC)	12.70	12.80	12.80	12.75	12.79	12.80	12.80	12.80
pH (S.U.)	7.35	6.67	5.85	5.33	5.01	4.85	4.76	4.75
Sp. Cond. (mS/cm)	0.026	0.024	0.023	0.022	0.022	0.022	0.022	0.022
Water Temp. (°C)	19.21	19.50	19.58	19.53	19.48	19.57	19.57	19.54
Turbidity (NTUs)	53.41	26.17	14.02	4.71	2.74	1.53	5.26	1.95
Dissolved Oxygen (mg/L)	7.85	7.48	7.62	7.50	7.68	7.65	7.65	7.65
Salinity (ppt)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
ORP (mV)	-4.3	+56.1	129.4	164.1	178.5	184.0	185.8	188.2
COMMENTS/OBSERVATIONS	begin purging at 1249							
	Purging rate (ml/min) 250							

FIELD DATA LOG FOR GROUNDWATER SAMPLING

Page 1 of 2

Date (mo/day/yr)	Dec 04, 2015			Casing Diameter	3 1/2 inches		
Field Personnel	Randy Morgan			Casing Material	PVC		
Site Name	UTC Delavan Spray Technologies Site, Bamberg, SC			Measuring Point Elevation	1/100 ft		
AECOM Job #	60314964			Height of Riser (above land surface)	1/100 ft		
Sample ID	MW-250			Land Surface Elevation	1/100 ft		
Upgradient	Downgradient	Sidegradient	Source	Screened Interval	53.21	—	63.21
Weather Conditions	clear/sunny			Dedicated Pump or Bailer	YES	NO	X
Air Temperature	50's			Steel Guard Pipe Around Casing	YES	X	NO
Total Well Depth (TWD) =	63.21 ft			Locking Cap	YES	X	NO
Depth to Ground Water (DGW) =	4.92			Protective Post/Abutment	YES	X	NO
Length of Water Column (LWC) = TWD - DGW =	58.29			Well Integrity Satisfactory	YES	X	NO
1 Casing Volume (OCV) = LWC x	1/163 = 9.50 gal			Yield	LOW	MODERATE	HIGH X
3 Casing Volumes =	28.50 gal = Standard Evacuation Volume			Comments/Observations	Sample Time: 1227 QA/QC: Duplicate		
Method of Sample Evacuation	Purging with a peristaltic pump			Sample Analytes:	VOC's		
Method of Sample Collection	peristaltic pump; reverse flow for VOCs			PID 0.7 well head 0.0 breathing zone			
Total Volume of Water Removed				gal			

	FIELD ANALYSES							
	Initial	.40	.80	1.20	1.60	2.0	2.4	2.8
VOLUME PURGED (gallons)	1130	1135	1140	1145	1150	1155	1200	1205
TIME (Military)	4:45	4:45	4:46	4:46	4:46	4:46	4:46	4:46
Water Level (ft. BTOC)	7.54	7.65	7.54	7.43	7.43	7.40	7.54	7.42
pH (S.U.)	0.267	0.267	0.267	0.267	0.267	0.267	0.267	0.267
Sp. Cond. (mS/cm)	18.63	18.75	18.76	18.84	18.94	18.91	18.78	18.87
Water Temp. (°C)	48.9.2	315.8	186.6	72.12	53.00	35.63	22.57	16.78
Turbidity (NTUs) (white milky)	1.91	1.75	1.55	1.13	0.98	0.92	0.93	0.91
Dissolved Oxygen (mg/L)	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Salinity (ppt)	26.9	+ 9.1	- 8.6	- 26.6	- 33.3	- 36.9	- 39.0	- 39.7
ORP (mV)								
COMMENTS/OBSERVATIONS	begin purging at 1127							
	Purging rate (ml/min) 250							

FIELD DATA LOG FOR GROUNDWATER SAMPLING

Page 2 of 2

Site Name	UTC Delavan Spray Technologies Site, Bamberg, SC			
AECOM Job #	60314964			
Sample ID*	MW-25D			
	Date (mo/day/yr)	Dec 4, 2015		
	Field Personnel	Randy Morgan		
	Comments/Observations:			
FIELD ANALYSES				
VOLUME PURGED (gallons)	3.20	3.60	4.0	4.40
TIME (Military)	1210	1215	1220	1225
Water Level (ft. BTOC)	4.96	4.96	4.96	4.96
pH (S.U.)	7.41	7.36	7.42	7.40
Sp. Cond. (mS/cm)	0.267	0.266	0.266	0.266
Water Temp. (°C)	18.86	18.86	18.95	18.98
Turbidity (NTUs)	15.79	9.67	5.53	5.59
Dissolved Oxygen (mg/L)	0.90	0.92	0.94	0.96
Salinity (ppt)	0.13	0.13	0.13	0.13
ORP (mV)	-40.4	-41.1	-39.9	-40.0
FIELD ANALYSES				
VOLUME PURGED (gallons)				
TIME (Military)				
Water Level (ft. BTOC)				
pH (S.U.)				
Sp. Cond. (mS/cm)				
Water Temp. (°C)				
Turbidity (NTUs)				
Dissolved Oxygen (mg/L)				
Salinity (ppt)				
ORP (mV)				
COMMENTS/OBSERVATIONS				

FIELD DATA LOG FOR GROUNDWATER SAMPLING

Page ____ of ____

Date (mo/day/yr)	Dec - 4 - 2015		
Field Personnel	Randy Morgan		
Site Name	UTC Delavan Spray Technologies Site, Bamberg, SC		
AECOM Job #	60314964		
Sample ID	MW-260		
Upgradient	Downgradient	Sidegradient	Source
Weather Conditions	Clear sunny		
Air Temperature	50's		
Total Well Depth (TWD) =	48.23		
Depth to Ground Water (DGW) =	9.55		
Length of Water Column (LWC) = TWD - DGW =	38.68		
1 Casing Volume (OCV) = LWC x	1.63 = 6.30 gal		
3 Casing Volumes =	18.91 gal = Standard Evacuation Volume		
Method of Sample Evacuation	Purging with a peristaltic pump		
Method of Sample Collection	peristaltic pump; reverse flow for VOCs		
Total Volume of Water Removed	2.4 gal		

Casing Diameter	2.0 inches		
Casing Material	PVC		
Measuring Point Elevation	1/100 ft		
Height of Riser (above land surface)	1/100 ft		
Land Surface Elevation	1/100 ft		
Screened Interval	35.23 - 48.23		
Dedicated Pump or Bailer	YES	NO	X
Steel Guard Pipe Around Casing	YES	X	NO
Locking Cap	YES	X	NO
Protective Post/Abutment	YES	NO	X
Well Integrity Satisfactory	YES	X	NO
Yield	LOW	MODERATE	HIGH
Comments/Observations	Sample Time: 1103 QA/QC: MS/MSD Sample Analytes: VOC's Purged at well head, 0.0 breathing zone		

VOLUME PURGED (gallons)	FIELD ANALYSES						
	initial	170	180	1.20	1.60	2.0	2.4
TIME (Military)	1030	1035	1040	1045	1050	1055	1100
Water Level (ft. BTOC)	9.55	9.55	9.55	9.55	9.55	9.55	9.55
pH (S.U.)	7.20	7.28	7.28	7.27	7.27	7.31	7.26
Sp. Cond. (mS/cm)	0.266	0.266	0.267	0.267	0.269	0.268	0.269
Water Temp. (°C)	18.15	18.27	18.43	18.47	18.51	18.49	18.47
Turbidity (NTUs)	238.1	98.32	39.56	20.40	9.26	6.89	4.60
Dissolved Oxygen (mg/L)	3.18	3.00	2.85	2.82	2.73	2.70	2.65
Salinity (ppt)	0.13	0.13	0.13	0.13	0.13	0.13	0.13
ORP (mV)	70.7	63.0	59.4	58.9	57.0	57.1	56.3
COMMENTS/OBSERVATIONS	begin purging at 1027 Purging rate (ml/min) 250 ml/min						

Accutest Laboratories Southeast

Chain of Custody

4405 Vineland Road, Suite C-15 Orlando, FL 32811
 TEL. 407-425-6700 • FAX: 407-425-0707
www.accutest.com

Accutest JOB #

PAGE 1 OF 1

Accutest Quote #

SKIFF#

Client / Reporting Information		Project Information		Analytical Information										Matrix Codes											
Company Name	AECOM	Project Name:	UTC Delavan Spray Technologies																						
Address	10 Patewood Blvd. Suite 500	Street	4331 Main Hwy											DW - Drinking Water											
City	Grenville	City	Bamberg	State	SC	State	SC											GW - Ground Water							
Project Contact	John Culom	E-mail	doria.culom@aecom.com	Project #										WW - Water											
Phone#	864-234-3000	Fax #												SW - Surface Water											
Sampler(s) Name(s) (Printed)	Randy Morgan	Client Purchase Order #	694021M											SO - Soil											
Accutest Sample #	Field ID / Point of Collection	DATE	TIME	SAMPLED BY:	MATRIX	TOTAL # OF BOTTLES	OTHER	NONE	HCl	NaOH	HN03	HPS04	NaOH+ZnAC	DI WATER	MEOH	TCL VOC'S 8260	TCL SVOC'S 8270	Metals + Hg PM13	TCL VOC'S 8260	TCL SVOC'S 8270	TCLP Metals			LAB USE ONLY	
	MW-260	1/4/15	1103	RM	GW	3	3									X									
	MW-260-MS	1/4/15	1103	RM	GW	3	3									X									
	MW-260-MSD	1/4/15	1103	RM	GW	3	3									X									
	MW-250	1/4/15	1227	RM	GW	3	3									X									
	MW-250-a	1/4/15	1227	RM	GW	3	3									X									
	MW-24	1/4/15	1327	RM	GW	3	3									X									
	Aqueous IDW-1	1/4/15	1420	RM	WW	6	5	1								X	X	X							
	Solid IDW-1	1/4/15	1420	RM	SD	2	2												X	X					
	TRIP Blank					2										X									
	Temp Blank					1																			
TURNAROUND TIME (Business Days)				Data Deliverable Information										Comments / Remarks											
<input checked="" type="checkbox"/> 10 Days Standard <input type="checkbox"/> 7 Day RUSH <input type="checkbox"/> 5 Day RUSH <input type="checkbox"/> 3 Day EMERGENCY <input type="checkbox"/> 2 Day EMERGENCY <input type="checkbox"/> 1 Day EMERGENCY <input type="checkbox"/> OTHER				Approved By: / Rush Code				<input type="checkbox"/> COMMERCIAL "A" (RESULTS ONLY) <input type="checkbox"/> COMMERCIAL "B" (RESULTS PLUS QC) <input type="checkbox"/> REDT1 (EPA LEVEL 3) <input type="checkbox"/> FULT1 (EPA LEVEL 4) <input checked="" type="checkbox"/> EDD'S										Saturday delivery UTC per Scope of Work							
Emergency or Rush T/A Data Available VIA Email or Lablink																									

Sample Custody must be documented below each time samples change possession, including courier delivery.

Relinquished by Sampler:	Date Time:	Received By:	Relinquished by:	Date Time:	Received By:
1 Randy Morgan	1/4/15 1700	2 TechEx 802045947106	3		4
Relinquished by:	Date Time:	Received By:	Relinquished by:	Date Time:	Received By:
5		6	7		8

Lab Use Only: Custody Seal in Place: Y N Temp Blank Provided: Y N Preserved where Applicable: Y N Total # of Coolers: Cooler Temperature (s) Celsius:

Accutest Laboratories Southeast

Chain of Custody

4405 Vineland Road, Suite C-15 Orlando, FL 32811
 TEL. 407-425-6700 • FAX: 407-425-0707
www.accutest.com

Accutest JOB #

PAGE 1 OF 1

Accutest Quote #

SKIFF#

Client / Reporting Information		Project Information		Analytical Information										Matrix Codes			
Company Name	ACCOM	Project Name	UIC Delavan Spray Technologies Site														
Address	16 Pineswood Dr Bldg 1 #500	Street	4334 Main Hwy											DW - Drinking Water			
City	Granville	State	SC	City	Bamboo	State											GW - Ground Water
Project Contact	DORIA WILSON	E-mail	doria.wilson@accon.com	Project #	60314964											WW - Water	
Phone#	864-224-8929	Fax #												SW - Surface Water			
Sampler(s) Name(s) (Printed)	Lester Alexander / Randy Morgan		Client Purchase Order #											SO - Soil			
Accutest Sample #	Field ID / Point of Collection	DATE	TIME	SAMPLED BY	MATRIX	TOTAL # OF BOTTLES	OTHER	NONE	HCl	NaOH	HNCO	NaSCN	NaOH+ZnAc	DI WATER	MEOH	SL - Sludge	
	DPT-SP-55-C (trip blank)	11/15/13 00	1A	SO	3/3	3										OL - Oil	
	DPT-SP-55	12/15/13 00	1A	SO	4	1										LIQ - Other Liquid	
	DPT-SP-11	12/15/14 00	1A	SO	4	1										AIR - Air	
																.SOL - Other Solid	
																WP - Wipe	
																LAB USE ONLY	
X 10 Days Standard																	
X 7 Day RUSH																	
X 5 Day RUSH																	
X 3 Day EMERGENCY																	
X 2 Day EMERGENCY																	
X 1 Day EMERGENCY																	
X OTHER																	
Approved By: / Rush Code				<input type="checkbox"/> COMMERCIAL "A" (RESULTS ONLY) <input type="checkbox"/> COMMERCIAL "B" (RESULTS PLUS QC) <input type="checkbox"/> REDT1 (EPA LEVEL 3) <input type="checkbox"/> FULT1 (EPA LEVEL 4) <input checked="" type="checkbox"/> EDD'S <i>UTC - per 50W</i>										Comments / Remarks			
Emergency or Rush T/A Data Available VIA Email or Lablink																	
Sample Custody must be documented below each time samples change possession, including courier delivery.																	
Relinquished by Sampler:	Date	Time:	Received By:	Relinquished by:							Date	Time:	Received By:				
<i>Lester Alexander Brown</i>	2/1/15		2 802045947140	3									4				
Relinquished by:	Date	Time:	Received By:	Relinquished by:							Date	Time:	Received By:				
5			6	7									8				

Lab Use Only: Custody Seal in Place: Y N Temp Blank Provided: Y N Preserved where Applicable: Y N Total # of Coolers: Cooler Temperature (s) Celsius:

ACCUTEST

LABORATORIES

Accutest Laboratories Southeast Chain of Custody

4405 Vineland Road, Suite C-15 Orlando, Fl 32811
TEL. 407-425-6700 • FAX: 407-425-0707
www.accutest.com

Accutest JOB #

PAGE / OF /

Matrix Codes
DW - Drinking Water
GW - Ground Water
WW - Water
SW - Surface Water
SO - Soil
SL - Sludge
OI - Oil
LIQ - Other Liquid
AIR - Air
.SOL - Other Solid
WP - Wipe

LAB USE ONLY

TURNAROUND TIME (Business Days)

Data Deliverable Information

Comments / Remarks

- 10 Days Standard
- 7 Day RUSH
- 5 Day RUSH
- 3 Day EMERGEN
- 2 Day EMERGEN
- 1 Day EMERGEN
- OTHER

Approved By: / Rush Code

- COMMERCIAL "A" (RESULTS ONLY)
- COMMERCIAL "B" (RESULTS PLUS QC)
- REDT1 (EPA LEVEL 3)
- FULT1 (EPA LEVEL 4)
- EDD'S

Emergency or Rush T/A Data Available VIA Email or LabLink

Sample Custody must be documented below each time samples change possession, including courier delivery.

Relinquished by Sampler: 1 Date/Maxim Date Time: 12/15 1730 Received By: 2 FDX 80204594739 Relinquished by: 3 Date Time: 4 Received By:
 Relinquished by: 5 Date Time: 6 Received By: 7 Relinquished by: 8 Date Time: 9 Received By:
 Lab Use Only: Custody Seal in Place: Y N Temp Blank Provided: Y N Preserved where Applicable: Y N Total # of Coolers: 1 Cooler Temperature (s) Celsius: 10

Lab Use Only: Custody Seal in Place: Y N **Temp Blank Provided:** Y N **Preserved where Applicable:** Y N **Total # of Coolers:** **Cooler Temperature (s) Celsius:**

IDW MANAGEMENT FORM

PROJECT: UTC Delavan Technologies

SITE NAME: _____

LOCATION: Bamberg SC

CONTAINER NUMBER	MEDIA DESCRIPTION	MEDIA ORIGIN	DATE FILLED	DATE SAMPLED	DATE DISPOSED	COMMENTS
D-1	Solid IDW	MW-25D and MW-26D	12/1-12/2/15			soil cuttings from sonic rig
D-2	Liquid IDW	MW-26D	12/1/15			drilling fluids & decon water
D-3	Liquid IDW	MW-25D	12/1/15			drilling fluids & decon water
D-4	Soil mix ons	DPT-59, DPT-59, B6-60, B6-7, DPT-60, DPT-61	12/1-3/15			soil cuttings from B6 & DPT
D-5	Liquid IDW	DPT-59, DPT-59, B6-60, B6-7, DPT-60, DPT-61	12/1-3/15			decon fluids (MW-24, 25D, 26D)
D-6	Liquid IDW	MW-26D	12-3-15			development H2O
D-7	Liquid IDW	MW-26D	12-3-15			development H2O
D-8	Liquid IDW	MW-26D	12-3-15			development H2O
D-9	Liquid IDW	MW-25D	12-3-15			development H2O
D-10	Liquid IDW	MW-25D	12-3-15			development H2O
D-11	Liquid IDW	MW-25D	12-3-15			development H2O
D-12	Solid IDW	MW-24	12-3-15			soil cuttings from sonic rig
D-13	Liquid IDW	MW-24	12-3-15			drilling fluids and decon water
D-14	Liquid IDW	MW-24	12-3-15			development water FM
D-15	Liquid IDW	MW-24	12-3-15			development water FM

11/30/15

0700 Drive to office. Get company truck. Load supplies
0745 Travel to site
0915 Sign in at office. Meet GEL Geophysics. Perform utility locations at proposed wells MW-24, MW-25 D, and MW-26 D.
1130 SAEDACCO arrives. Discover that they do not have the 2 forms of ID for each employee. Therefore, not able to start today because WTC does not have someone available to serve as an escort for on-site work.
1300 Move rig across road and perform limited clearing with skid-steer at proposed well MW-26 D. C. Suddeth & L. Alexander re-locate MW-25 D, due to standing water and soft conditions.
1700 Depart site

12/1/15

0745 Arrive on site. sign in. Conduct Tailgate Safety Meeting.
0830 Begin drilling MW-26 D.
1130 at 52 ft. Based on PID readings and conversation with W. Gerald, decide to install well to 48'. Install well MW-26 D. Screen 38-48. Add 7 bags sand. Tag sand at 36 ft. Add bentonite pellets. Tag bentonite at 33 ft at 1215
Break for lunch
1240 Back on site. Prep for grouting. Mix 2 bags of Baroid Aqua-GROUT in 28 gallons water as indicated on bag for a 30% solids grout.
1350 Pump 1st batch of grout through treatie
1405 Pump 2nd batch of grout.
Move equipment to MW-25 D location
1540 Begin drilling MW-25 D. Drill to 52 ft
1730 Leave work area. Lock gate. Turn in badge and sign out at plant.
1800 Depart site.

12/2/15

0800 Li Alexander at MW-25D with clear white C. Suddeth is in route to site.

0900 Arrive on site. Drillers cored 52-62. PID readings ranged from drill 62-67, have lower PID readings 54.11 in limestone. C. Suddeth & Li Alexander decide to set well at 62' with screen 52-62. Install bentonite pellets 64'-67'. Add well materials, screen 52-62. Add sand on top of bentonite starting at 64', 4H1 bags. Top sand at 50'. Add bentonite pellets. $\frac{1}{2}$ bucket bentonite at 47' at 1045. Rain beginning. Drillers call for truck to get their large truck/trailer rig unstuck from soft sand in powerline right of way.

1130 Break for lunch

1215 Back at rig, steady rain continuing.

1330 Drillers back at rig. Mix grout. Each batch consists of ~~20~~ 28 gallons water and 2 bags of hard Agri-Gard.

1350-1511 Pump 4 batches of grout through tremie at MW-25D. It is believed that the limestone formation took a portion of the grout.

1511 Clean up site and begin moving supplies to the UTC property

12/2/15

1511-1700 Move rig and supplies to MW-24

1730 Depart site with samples. Drive to FedEx at the Columbia Airport. Deliver samples.

1930 Depart Airport.

12/3/15

0730 Arrive on site, conduct tailgate safety meeting. Miss Smock was in meeting.

0800 Begin drilling MW-21. R. Morgan prep for well development.

0920 At 21 ft. Encountered calcareous sand with shells (top of limestone) at 22 ft. Discuss well depth with Cr. Gould. Plan for screen 6-21, Add bentonite pellets starting at 21 ft. Tag bentonite at 22 ft. Add PVC well materials, screen 6-21. Add sand. Tag sand at 5 ft. Add bentonite pellets. Tag bentonite at 3.5 ft. Mix Aqua-Guard grout & place grout from 0-3.5 ft. Drillers clean up, load equipment, and build pads with flush-mount completions at monitoring wells.

1200 Break for lunch

1245 Back on site: provide oversight for drillers. Move all IDW to Haz waste area behind plant.

1600 Depart site

11/30/15 Post R1 Assessment

0715 LAlexander mob from Greencastle
to Banbury

0945 LAlexander arrives on site.

0955 R Morgan on site. AZZON signs in.
Check in w/ Caddell & GEL

Post R1 Assessment

11/30/15

1500 Set up for slug tests

1530 Set up on MW-1. DTW = 10.07
10.07
Level trb II 700 S/N 143586

1600 Waiting for MW-1 to equil. brke after
slug in. (MW1-out-1) setup on
MW-21

1615 Set up MW21-in-1. DTW = 10.66

1619 Slug in at MW-21.

1630 Stop slug in 1 at MW-21. Start slug out
MW21-out-1. Check on MW-1

1650 Stop MW-21-out-1. Set up MW21-in-2
DTW 11.23.

1652 Start MW-21/in-2.

1700 Start MW-1-in-1.

1703 Stop MW-21/in-2. Start MW-21-out-2

1730 Stop MW-21/in-2. Start MW-1-in-2

~~1745~~ 1745 put slug in MW-1 & let equil. brke
overnight

1745 put slug & transducer in MW-5 &
sew for night. DTW (stacked) was
4.56 AT BTDC

1815 AZZON off site.

12/1/15 Post R1 Assessment

0700 onsite ~~L.Alexander~~ R.Morgan arrives shortly after
0705 sign in & setup for slug test

0715 on site at MW-5. Set up & start test MW5-out 1. DRW 4.64 A Brox

0725 Mob to MW-1

0730 Set up & start test MW1-out 2, DRW=1025m

Field Team: L.Alexander & R.Morgan

Assignment: Slug test &

Weather: 60-70; foggy in AM; overcast

Equipment: transducers, rework unit, slug bars,
Geoprobe, handaugers, soil sampling
Equipment, P.D. calculator & dust monitor

0735 Mob to MW-5. Start test MW5-out 1
put slug back in and let equilibrate.

0745 Start test MW5-out 2.

0805 Stop test MW5-out 2. Clean up &
mob to meet C.Siddith out front
participate & HDS tailgate. Discuss today's
SOW.

0830 Meet w/ K.Coombs & W. Smoak. WES
will be our escort outside later today.
Crew mob to set up R.Morgan & Alexander
organizing equipment & W.Keyes prepping
for geoprobe work

0930 Mob to BG-7 w/ R.Morgan & W. Keyes

Post R1 Assessment

12/1/15

0940 Begin handauging at BG-7.

W.Smoak came out to check on us

1010 W.Smoak heads ship to retrieve
STADACCO's screens that were delivered

1020 W.Smoak heads back inside

1030 Finish at BG-7

Collected BG-7-6 at 1025 & BG-7-10
at 1030 for TDS. mob to BG-6 at
location of former 84-5

1040 Begin geoprobe at BG-6.

1055 Collect sample BG-6-6 ~~at~~ for TDS

1105 Collect sample BG-6-10 for TDS

1110 Finish up at BG-6 & pack up, mob to
DPT-SB.

1130 Set up on DPT-SB. Condrill has an
incompatible plug & pressurized water tank
already work (rental from hertz that
STADACCO brought). W.Keyes calling shop.

1140 W.Smoak stops by to check on us.
He says he can make us an

adapter plug he has the materials
& Neron will get a sprayer for water

1150 to start for lunch.

1240 R.Morgan & L.Alexander back on site
Set up on DPT-SB & bag in for samples

12/1/15 Post RI Assessment

1300 Start coring DPT-58.

1320 Finish coring DPT-58. Corehole is 4.5" thick set up to export.

1330 Begin geoprobing DPT-58

1350 Collect Sample DPT-58-5.5 from 4.5'-5.5' for VDL8 & 9% solids

1400 Collect Sample DPT-58-4 from 10-11' for VDL8 & 9% solids

1410 LAlexander call to DCullen, lab only sent one soil TB & won't do the rest of the sampling until tomorrow. Hold time for VDLs to 48 hrs. DCullen to call lab and see if LAlexander can make her own TB out of a bottle set

1420 W. Keyes setting well. Boring to 16' bgs well set at 15' w/ 10ft of pro grade screen

1420 DCullen sent message - lab verified that we can make our own TB.

1430 RMorgan to get ice for samples & pack cooler. LAlexander logging.

W. Keyes getting well completion materials

1445 well wasn't completed. W. Keyes cleaning up & will head to help crew on Bunker property.

Post RI Assessment 12/1/15

RMorgan taking cooler to shipping receiving for Tidex pick up. LAlexander logging rest of sample from DPT-58. DTW on DPT-58 at ~9.7 ft BOPC.

1545 Head to MW-1 to finish slush test

1550 Stop test MW-1-out 2, decon transducer.

1555 Move to MW-21D.

1600 Set up on MW-21D. DTW=12.08 W, wait 5 min & double check. TD of well is 53ft.

1610. DTW is 12.08, transducer in the well. Set up test MW21D-in 1.

1615 Stop test MW21D-in 1. Setup MW21D-out 1

1620 Stop test MW-21D-out 1. Setup MW21D-in 2

1625 Stop test MW-21D-in 2. Set up MW21D-out 2

1630 Stop test MW-21D-out 2. Setup MW-21D-in 3.

1635 Stop test MW21D-in 3. Setup MW21D-out 3.

1640 Stop test MW21D-out 3. Clean up.

1650 Mib to Bunker property & setup on MW-22D. TD=5ft TD=48ft DTW=11.52ft
1st set & will check in 5 min. Head about 10ft to 22.14ft

1701 Start test MW22D-in 1

1705 Stop test MW22D-in 1. Setup MW22D-out 2

1710 Stop test MW22D-out 1. Setup MW22D-in 2

1715 Stop test MW22D-in 2. Setup MW22D-out 2

12/1/15 Post RI Assessment
1720 Stop test MW22D-^{out 2}~~25~~ ft. Setup
MW22D-in 3.

1725 Stop test MW22D-^{out 4}~~25~~ ft. MW22D-in 3.
Setup MW22D-out 3

1730 Stop test MW22D-out 3 pack up
Head to site & sign out

1740 Onsite at Delavan Office
closed. Waiting to check on
Chuck Suddeth

1750 AEROMonitor

5

Post RI Assessment 12/1/15

0640 Call from C Suddeth. He is running
late due to a major plumbing
problem at his house. Will
call again after he speaks
w/ plumber

0740 Arrive onsite. Sign in. Speak
w/ C Suddeth. He is on his
way. Alexander will head
w/ crew across to 2nd deep
well & work w/ them until
CSuddeth gets here.

Calibrate multimeter. reading

CO = 48 ppm, H₂S = 9.8 ppm

O₂ = 18% LEC = 43%

gas car reads CO = 50 ppm, H₂S = 10 ppm
O₂ = 18% LEC = 50%.

0800 Drillers begin work. Alexander &
R Morgan back to ACO. Smoke agent
plan ready & card w/ Gated re paperwork
for V. Ellison who might be
on site today.

0820 Drillers on MW-251D. C Alexander
& R Morgan arrive. Drillers start
advancing next 10 ft.

0850 took PD readings highest at 6264

12/2/15 Post RI Assessment

Bgs. Called chuck. He is a few minutes out & will be here shortly. 0910 Chuck onsite. We go over status. Decide to drill another 5 ft to check PIP readings & see if we are still in limestone.

See Chuck's notes & bgs.

1000 Crew prepping to set well at 52-62' bgs. RMorgan & LAlexander get drums labeled & wells flagged while waiting for W. Keyes to finish up w/ crew. Plan to mob across road to work inside once W. Keyes is available.

1100 Move in & set up on #14 DPT-59 1127 finish coring DPT-59. concrete is 4.5" thick

1230 DPT-59 installed to 15 ft.

Set well. screen 5-15 ft

1245 install 2 ft sand above screen & 1 ft bentonite above that. Drill crew to land. LAlexander still logging. RMorgan to decor

1320 Return to lunch

1550 Back onsite. Adam & SHOGACCO Hand

Post RI Assessment 12/2/15

Auger crew mob to Wickman room
Br DPT-60.

DTW on DPT 59 = 9.42 TD = 15.05 ft
1410 Hit concrete below 4' of concrete at 1st location for DPT 60. Called Walter. Crew moves to DPT-61 & cores.

1445 Crew finish at DPT-61 coring.
1451 Try to reach Walter

1500 Reach Walter. Gerald agrees that that crew will step back ft closer to DPT-35 & if that doesn't work, will abandon that pt.

1510 Continue at DPT-60 after coring is successful

1545 1600 Install monitor 7 ft at DPT-60
Screen 5-15'; 1 ft sand above screen & 1 ft bentonite. DTW = 9.70 TD = 15.25 ft
Start augering DPT-51

1650 Finish at DPT-61. Install monitor 7 ft
Screen 5-15'. 1 ft sand above screen
1 ft bentonite. DTW = 9.49 TD = 14.92

1730 Drillers setting last 10 ft.
LAlexander finish logging. recomp done.
& pack up tools

1830 off site

12-3-15 Post RI Assessment

0745 arrived on site
0747 H+S briefing w/ Chuck Sandwith
0815 Separate equipment to return to Greenville w/ Leslie today
0845 empty decon water into drum from hand augering

0900 off MW-26D to set up and begin development

0920 begin developing MW-26D

0945 Shawn Atkinson arrived on site - an individual then bursts on the property and was informing that he lives at: Shawn Atkinson

504 Broxton Bridge Rd 29003

803-300-2198 ~~████████~~

Developing wells will consist of pumping w/ ground surface pump at 1.5 GPM. Surged every 10 minutes then take readings at end of 10 minutes until clearing - stabilization of parameters

1120 complete developing MW-26D

decon pump - move to MW-25D

1150 begin developing MW-25D

1330 complete developing MW-25D

Post RI Assessment 12-3-16

12/3/16

1340 decon pump

1350 lunch

1415 move empty drums & pallet to MW-24 for development

Verify all drums are labeled and recorded on IDW log - will need to fill out Non Hazardous labels for IDW drums

1445 Inside bldg to retrieve cones from DPT locations - DPT-59 and 61 have in 1/8-1/16" lip of concrete on on side - where the vault dropped, took photos and sent to Leslie Alexander at DEC - took Chuck inside to look at these wells.

Nothing can be done at this time. Drillers had already left site.

Put Non Hazardous labels on all drums 1650 off site after staying out and turning badge on.

12-4-12 Fost KI Assessment
12/4/15

0600 calibrate VSI 556 inside
motel room before leaving for site
0710 arrived on site at MW-24
set up to develop w/ Grundfos pump
0730 began developing MW-24
pump stopped several times - low yield
well will have to use baster to
develop with baster well dry ^{early} in 20-30
1000 complete developing MW-24
using baster, removed 25.5 gals
18 well volumes
1030 at MW-260 begin to
micro purge w/ peristaltic pump w/
tubing inlet in middle of screen
1103 sampled MW-260 also
collect MS/MSD for VOC's
1127 at MW-250 begin to
micro purge w/ peristaltic pump
with tubing inlet in middle of screen
1227 Sampled MW-250 for VOC's
also collected duplicate
1247 at MW-24 begin to micro purge
with peristaltic pump tubing in middle of
water column
1327 Sampled MW-24

Fost KI Assessment 11/12
12/4/15

1345 at JDW storage area
911 of MW-24 development and
purge water went into D-5 drum
there is NO D-14 or D-15 drums
1355 preparing to sample
Solid JDW-1 out of drums
D-11, D-12, and D-4 composite
1415 sample collected - Solid JDW-1
1420 sampled D-5 composite of
3-wells MW-24, 250, 260, decontam
Aqueous JDW-1
label OPT-points inside and take
photos
1515 off site to purchase additional
ice to pack samples for shipment
1700 ship samples fed EX for
Saturday delivery in Columbia SC
1830 returned equipment
1900 at AE 60m.

APPENDIX B

MONITORING WELL PERMIT APPLICATION AND PROPOSED CONSTRUCTION DETAILS

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

July 21, 2015

Mr. William Penn
United Technologies Corporation
EH&S Remediation Group
9 Farm Springs Road, MS101
Farmington, CT 06032

Re: Comments on the Remedial Investigation Report dated June 29, 2015
Post Remedial Investigation Work Plan dated June 29, 2015
Goodrich Delavan Spray Technology Site
Bamberg County
VCC #13-4762-RP
File #51778 (Former Site ID ##02211)

Dear Mr. Penn,

The Department has reviewed and reviewed the referenced submittals and offers the following comments:

Comments on the Remedial Investigation Report dated June 29, 2015

These corrections to the RI Report are approved as submitted.

Post Remedial Investigation Work Plan dated June 29, 2015

The referenced Work Plan is approved as submitted. Attached is your copy of the Monitoring Well Installation Approval for the installation of seven (7) permanent wells. The original well installation approval has been sent to Mr. Walter Gerald of AECOM. The analytical results from the groundwater samples will be submitted in the next monitoring report due on or before January 15, 2016. The remedial investigation report with the documentation of the field work and the soil analytical data should be submitted on or before September 15, 2015. Please note the following:

- Well construction and sampling derived waste including but not limited to drill cuttings, drilling fluids, and development/purge water should be managed properly and in compliance with applicable requirements. If containerized, each vessel should be clearly labeled with regards to contents, source, and date of activity.
- Monitoring wells are to yield groundwater samples representative of the zone monitored per R.61-71 H.1.c of the South Carolina Well Standards and Regulations (e.g. low flow sampling techniques are recommended for samples to be analyzed for metals to reduce induced turbidity).

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

Monitoring Well Installation Approval

Approval is hereby granted to:

(on behalf of):

Facility:

Site Identification:

County:

AECOM

UTC

Delavan Spray Site

#02211

Bamberg

This approval is for the installation of three (3) 2" permanent groundwater wells and four (4) 1" permanent groundwater monitoring wells. These wells are to be installed per the correspondence dated July 1, 2015. The wells are to be installed following all of the applicable requirements of R.61-71.

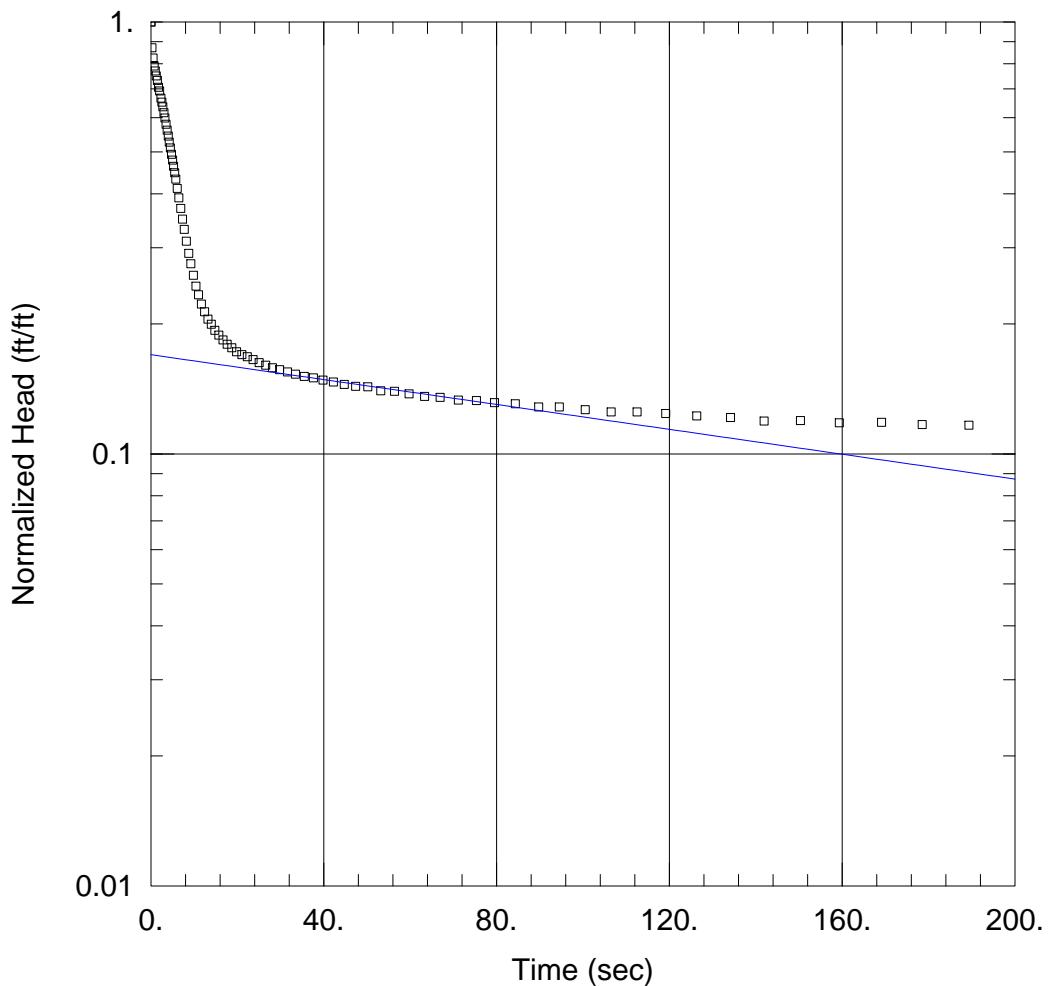
Please note that R.61-71 requires the following:

1. All wells shall be drilled, constructed, and abandoned by a South Carolina certified well driller per R.61-71.D.1.
2. A Water Well Record Form or other form provided or approved by the Department shall be completed and submitted to the Department within 30 days after well completion or abandonment unless another schedule has been approved by the Department. The form should contain the "as-built" construction details and all other information required by R.61-71.H.1.f
3. All analytical data and water levels obtained from each monitoring well shall be submitted to the Department within 30 days of receipt of laboratory results unless another schedule has been approved by the Department as required by R.61-71.H.1.d.
4. All temporary monitoring wells shall be abandoned within 10 days of borehole completion using appropriate methods as required by R.61-71.H.4.c.
5. If any of the information provided to the Department changes, the **Addie Walker (803) 898-0722** shall be notified a minimum of twenty-four hours prior to well construction as required by R.61-71.H.1.a.

This approval is pursuant to the provisions of Section 44-55-40 of the 1976 South Carolina Code of Laws and R.61-71 of the South Carolina Well Standards and Regulations, dated April 26, 2002.

Date of Issuance: **July 21, 2015**

Approval #: **MW-10241**



Addie Walker, Hydrologist

State Remediation Section

Bureau of Land and Waste Management

**APPENDIX C
SLUG TEST ANALYSIS**

MW1-OUT1

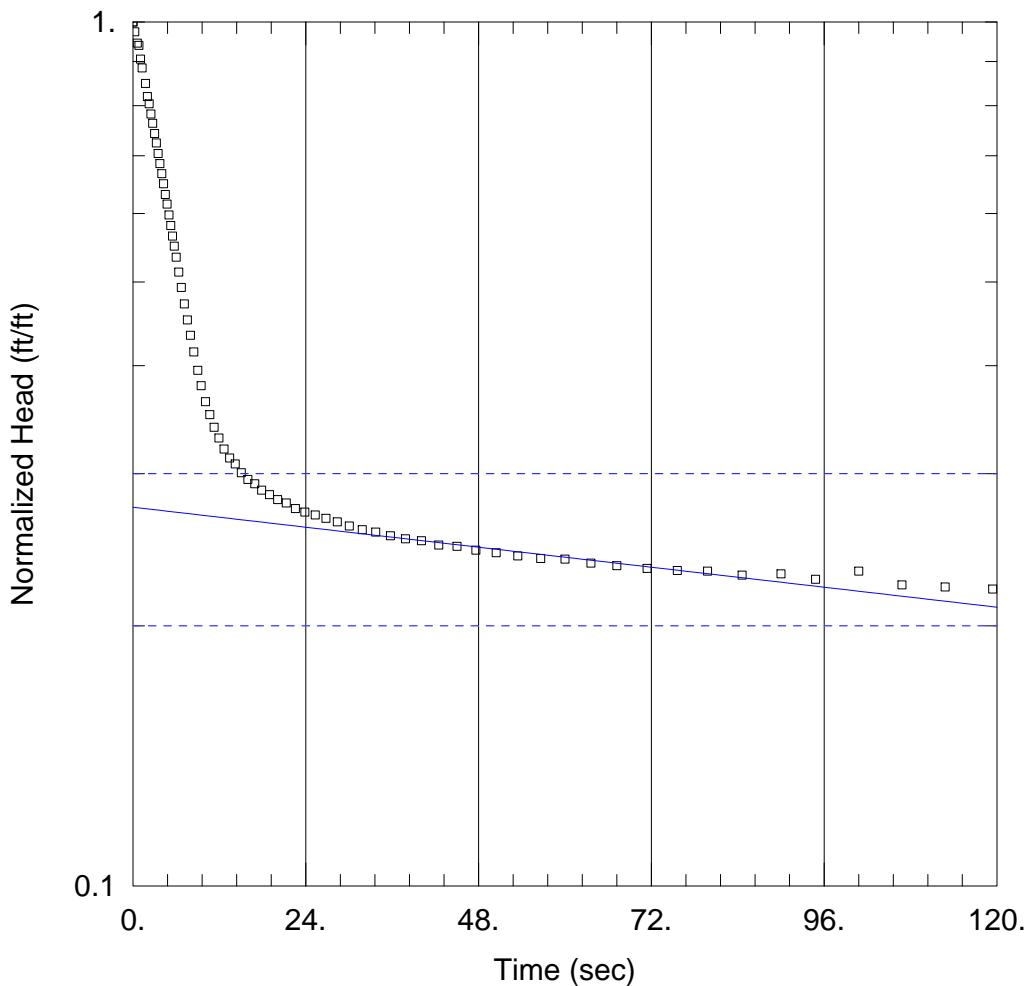
Data Set: L:\...\MW1-OUT1.aqt
 Date: 04/27/16

Time: 11:11:10

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-1
 Test Date: 11/30/15

AQUIFER DATA


Saturated Thickness: 19.56 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1)

Initial Displacement: 2.686 ft Static Water Column Height: 7.56 ft
 Total Well Penetration Depth: 7.56 ft Screen Length: 7.56 ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 0.2586 \text{ ft/day}$ $y_0 = 0.4558 \text{ ft}$

MW1-OUT2

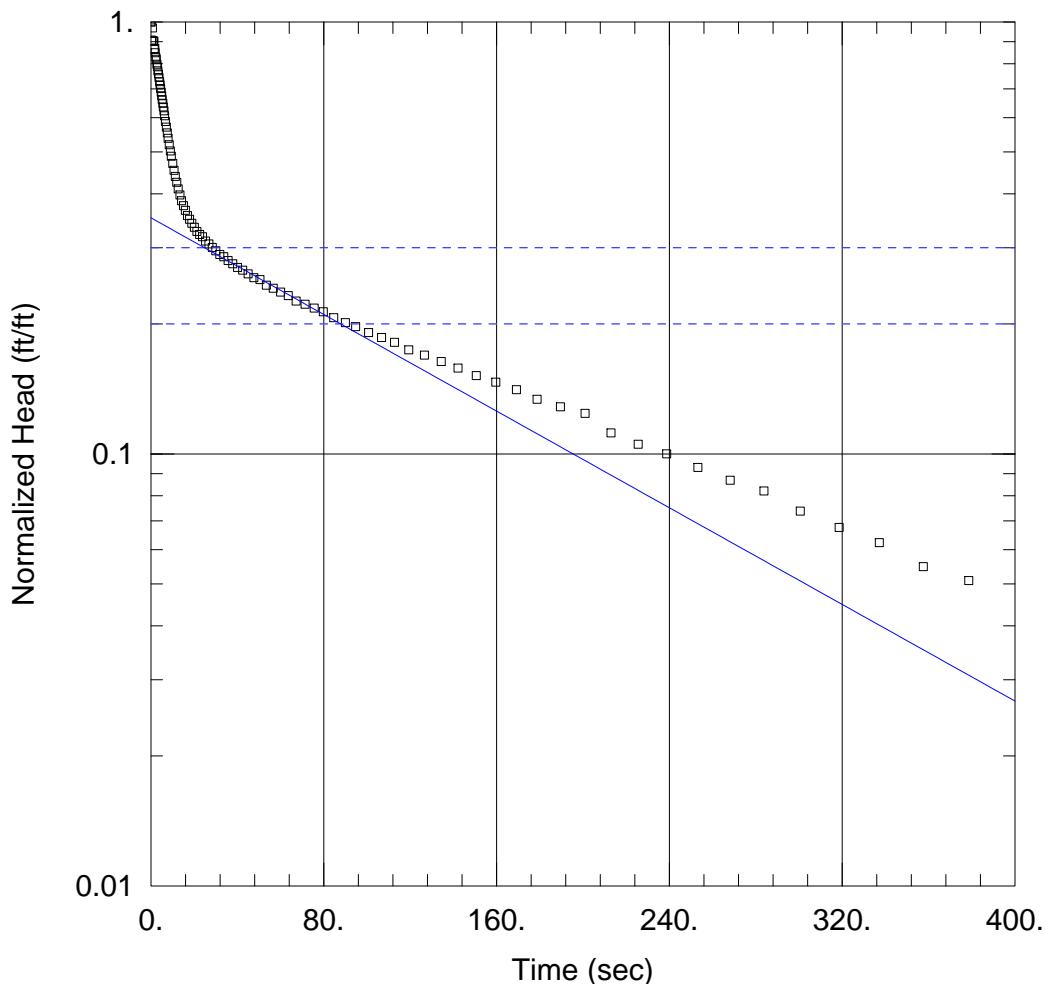
Data Set: L:\...\MW1-0UT2.aqt
 Date: 04/27/16

Time: 11:06:41

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-1
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 19.43 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1)

Initial Displacement: 2.407 ft Static Water Column Height: 7.43 ft
 Total Well Penetration Depth: 7.43 ft Screen Length: 7.43 ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 0.1751 \text{ ft/day}$ $y_0 = 0.6604 \text{ ft}$

MW5-OUT1

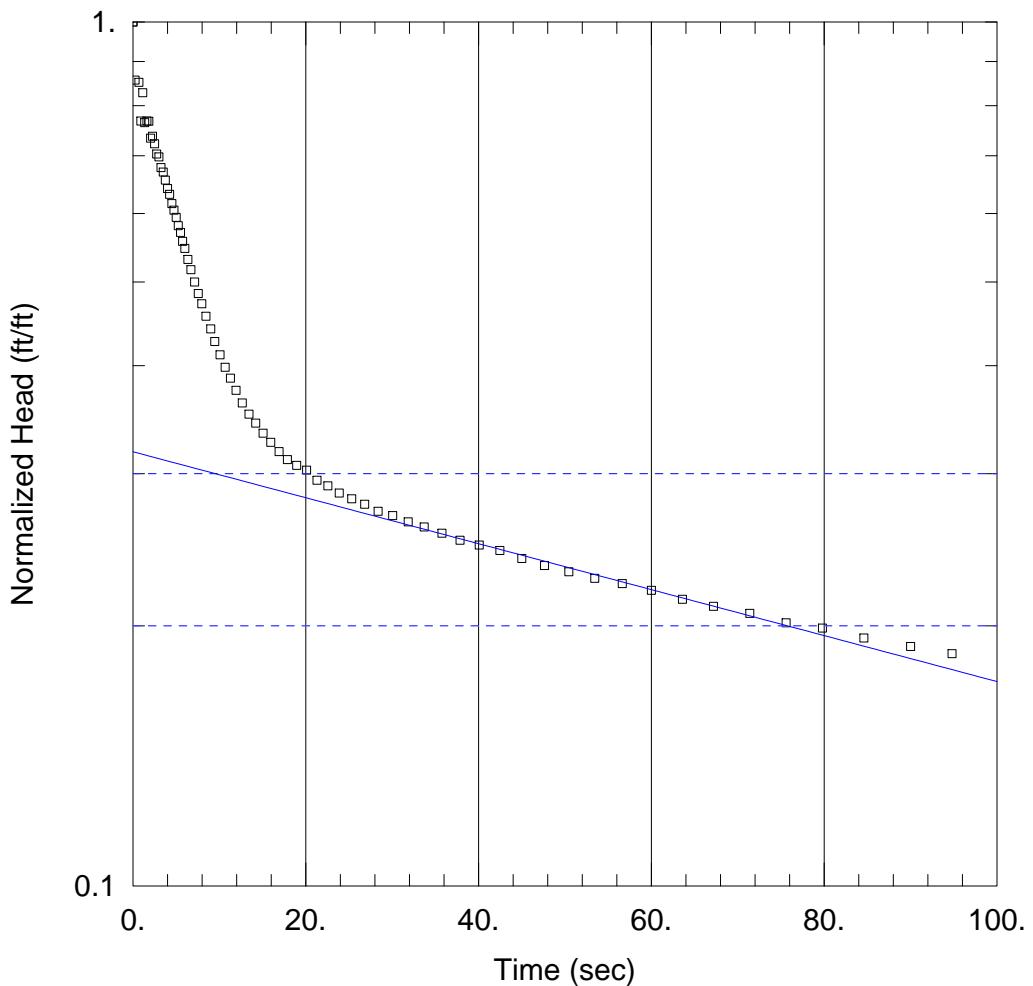
Data Set: C:\...\MW5-OUT1.aqt
 Date: 04/27/16

Time: 11:15:12

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-5
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 25.48 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5)

Initial Displacement: 2.279 ft Static Water Column Height: 9.48 ft
 Total Well Penetration Depth: 9.48 ft Screen Length: 9.48 ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 0.4356$ ft/day $y_0 = 0.8022$ ft

MW5-OUT2

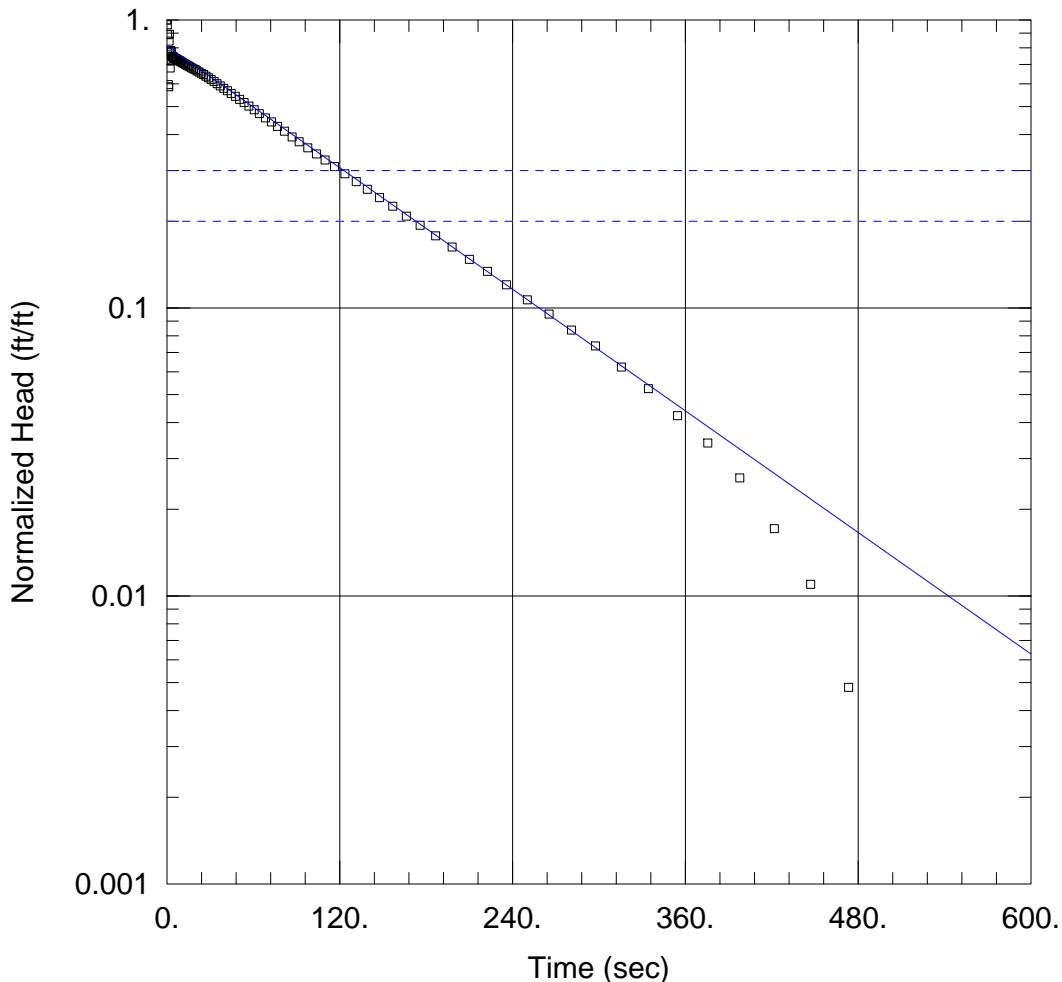
Data Set: L:\...\MW5-OUT2.aqt
 Date: 04/27/16

Time: 11:13:57

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-5
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 25.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5)

Initial Displacement: 2.52 ft Static Water Column Height: 9.5 ft
 Total Well Penetration Depth: 9.5 ft Screen Length: 9.5 ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 0.4138 \text{ ft/day}$ $y_0 = 0.8015 \text{ ft}$

MW21-IN1

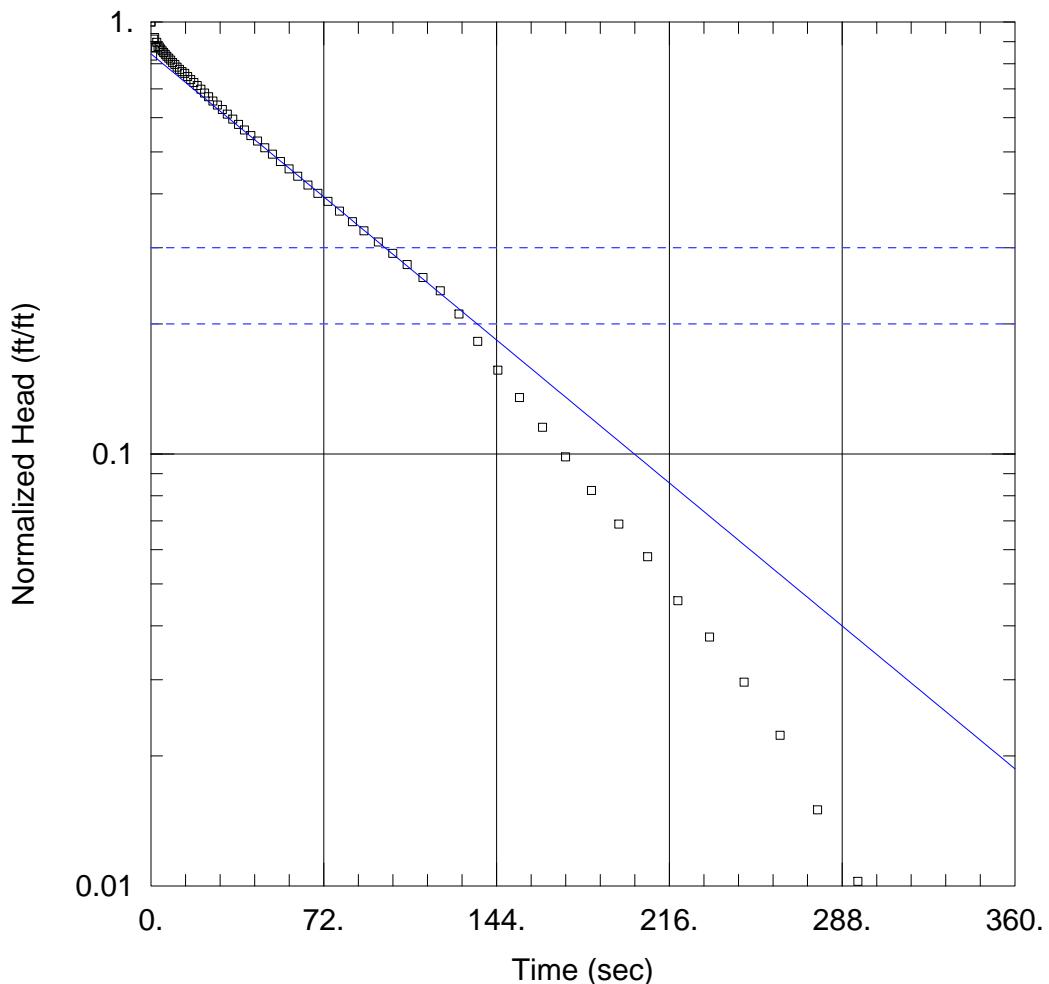
Data Set: C:\...\MW21-IN1.aqt
 Date: 04/27/16

Time: 11:37:17

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-21
 Test Date: 11/30/15

AQUIFER DATA


Saturated Thickness: 22.76 ft Anisotropy Ratio (Kz/Kr): 0.01

WELL DATA (MW-21)

Initial Displacement: <u>3.739</u> ft	Static Water Column Height: <u>22.76</u> ft
Total Well Penetration Depth: <u>22.76</u> ft	Screen Length: <u>15.</u> ft
Casing Radius: <u>0.083</u> ft	Well Radius: <u>0.33</u> ft

SOLUTION

Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
$K = 2.934$ ft/day	$y_0 = 3.031$ ft

MW21-IN2

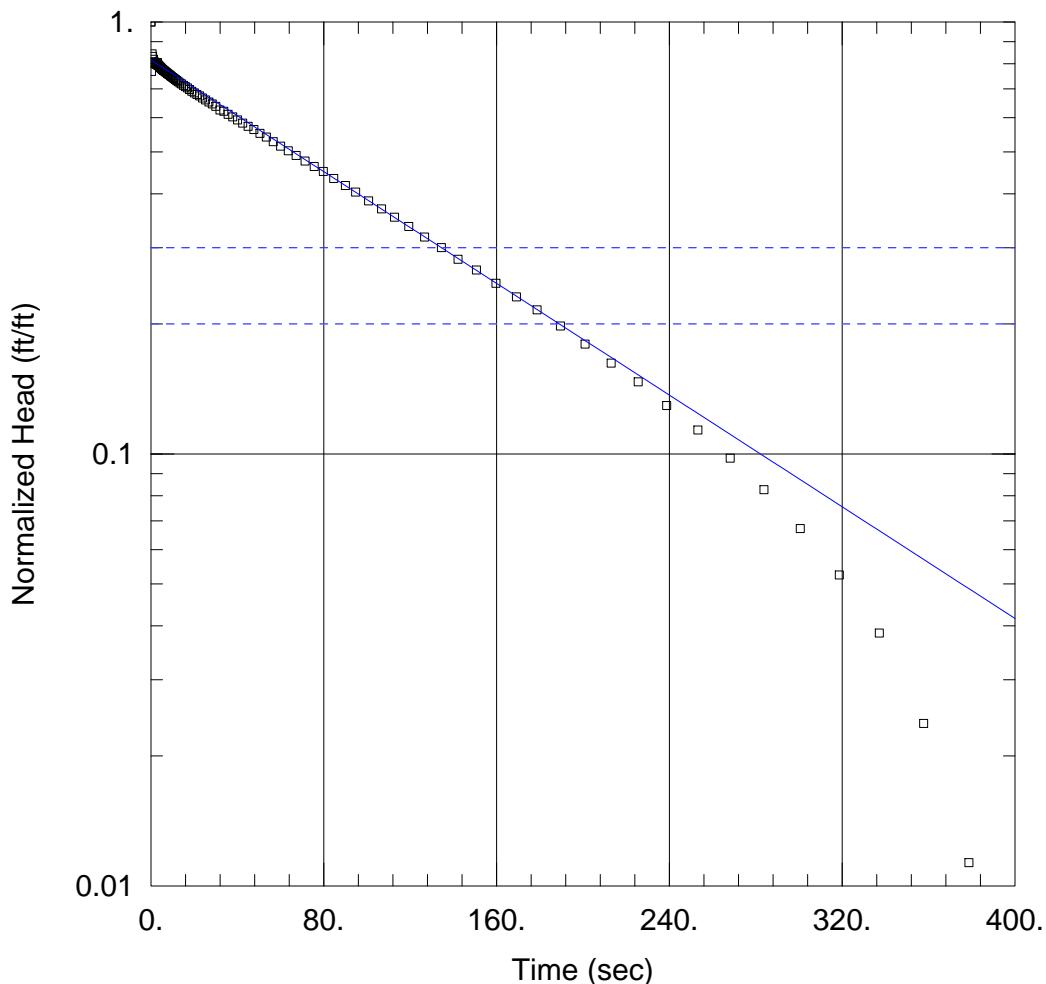
Data Set: C:\...\MW21-IN2.aqt
 Date: 04/27/16

Time: 11:33:22

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-21
 Test Date: 11/30/15

AQUIFER DATA


Saturated Thickness: 22.57 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-21)

Initial Displacement: 2.733 ft Static Water Column Height: 22.57 ft
 Total Well Penetration Depth: 22.57 ft Screen Length: 15. ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 0.6668 \text{ ft/day}$ $y_0 = 2.305 \text{ ft}$

MW21-OUT1

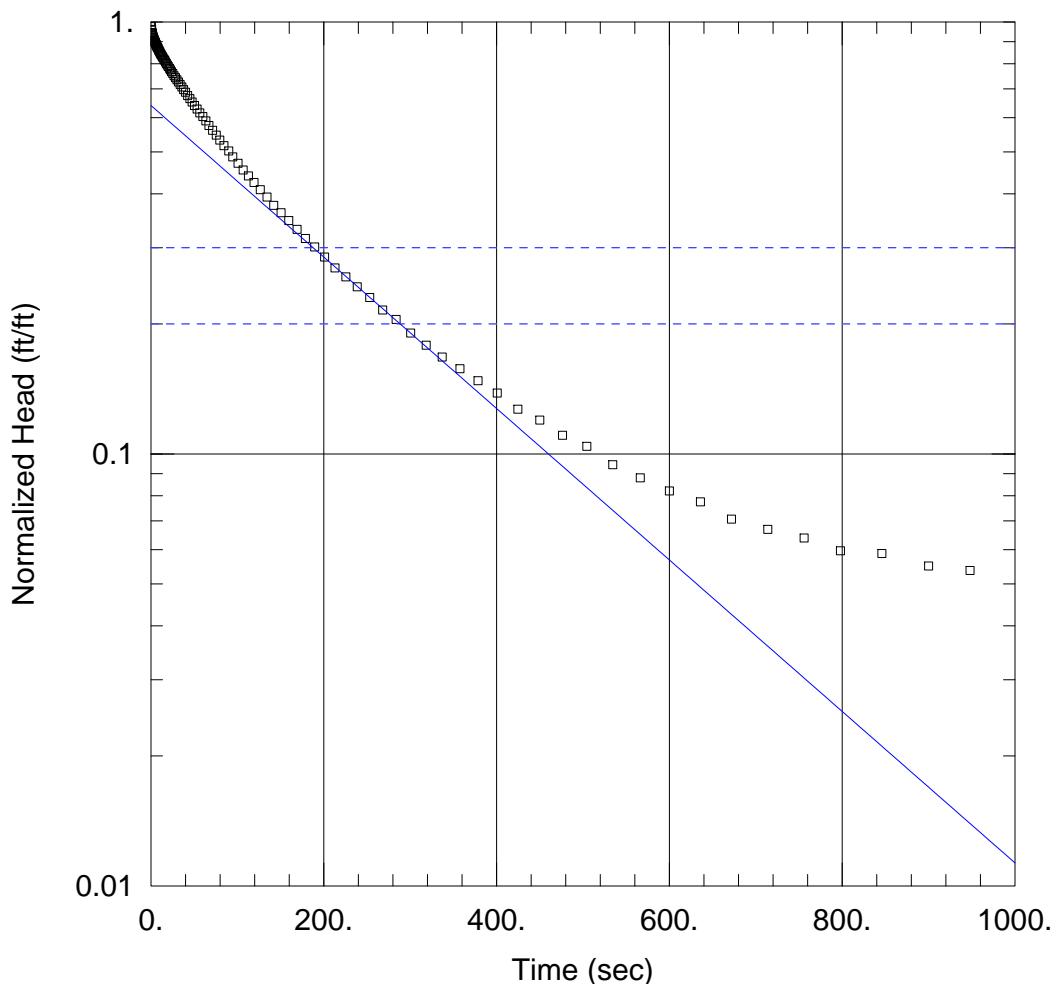
Data Set: C:\...\MW21-OUT1.aqt
 Date: 04/27/16

Time: 11:37:40

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-21
 Test Date: 11/30/15

AQUIFER DATA


Saturated Thickness: 22.69 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-21)

Initial Displacement: 2.65 ft Static Water Column Height: 22.69 ft
 Total Well Penetration Depth: 22.69 ft Screen Length: 15. ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 0.4693 \text{ ft/day}$ $y_0 = 2.163 \text{ ft}$

MW21-OUT2

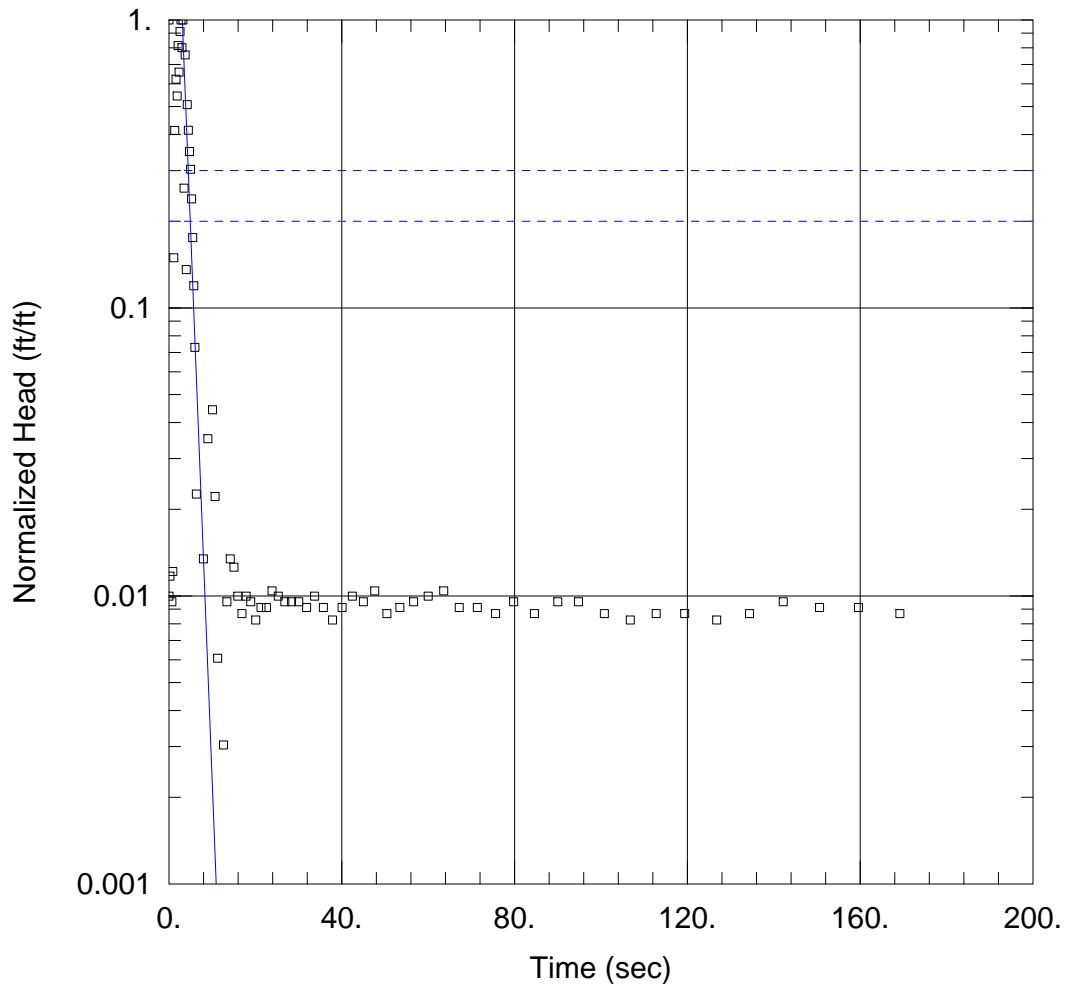
Data Set: C:\...\MW21-OUT2.aqt
 Date: 04/27/16

Time: 11:36:08

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-21
 Test Date: 11/30/15

AQUIFER DATA


Saturated Thickness: 22.5 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-21)

Initial Displacement: 2.363 ft Static Water Column Height: 22.5 ft
 Total Well Penetration Depth: 22.5 ft Screen Length: 15. ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 0.2541 \text{ ft/day}$ $y_0 = 1.513 \text{ ft}$

MW21D-IN1

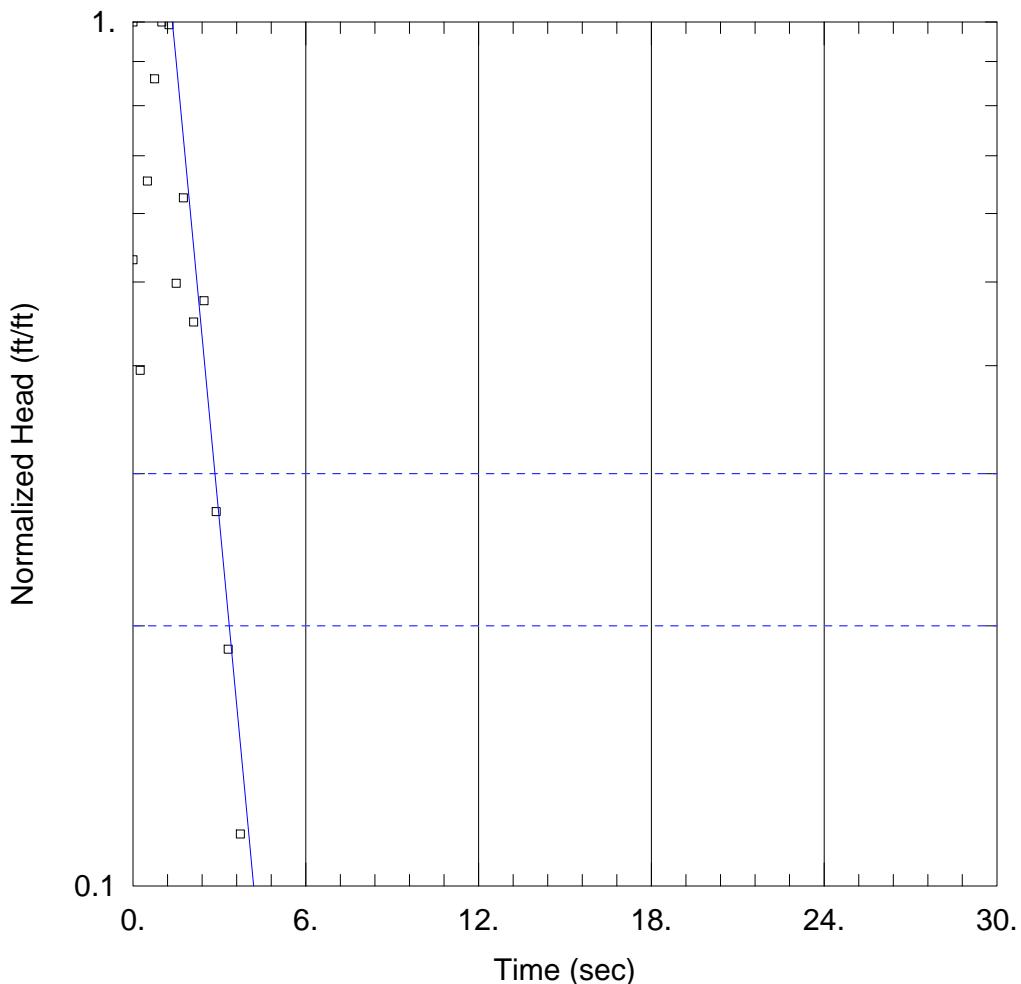
Data Set: C:\...\MW21D-IN1.aqt
 Date: 04/27/16

Time: 11:39:13

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-21D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 57.61 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-21D)

Initial Displacement: <u>2.304</u> ft	Static Water Column Height: <u>40.61</u> ft
Total Well Penetration Depth: <u>40.61</u> ft	Screen Length: <u>10.</u> ft
Casing Radius: <u>0.083</u> ft	Well Radius: <u>0.33</u> ft

SOLUTION

Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
$K = 72.53$ ft/day	$y_0 = 35.1$ ft

MW21D-IN2

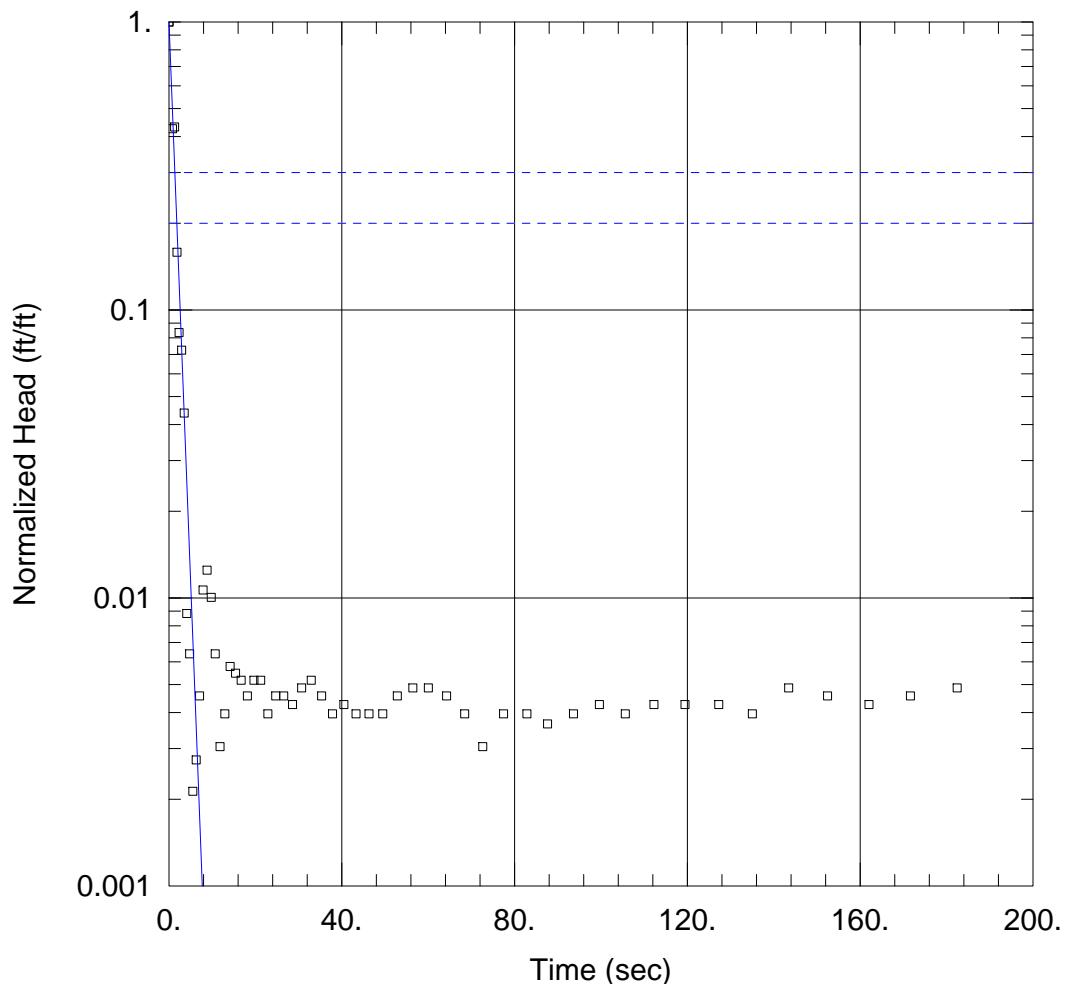
Data Set: C:\...\MW21D-IN2.aqt
 Date: 04/27/16

Time: 11:48:01

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-21D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 57.61 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-21D)

Initial Displacement: <u>2.725</u> ft	Static Water Column Height: <u>40.61</u> ft
Total Well Penetration Depth: <u>40.61</u> ft	Screen Length: <u>10.</u> ft
Casing Radius: <u>0.083</u> ft	Well Radius: <u>0.33</u> ft

SOLUTION

Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
$K = 67.22$ ft/day	$y_0 = 8.346$ ft

MW21D-IN3

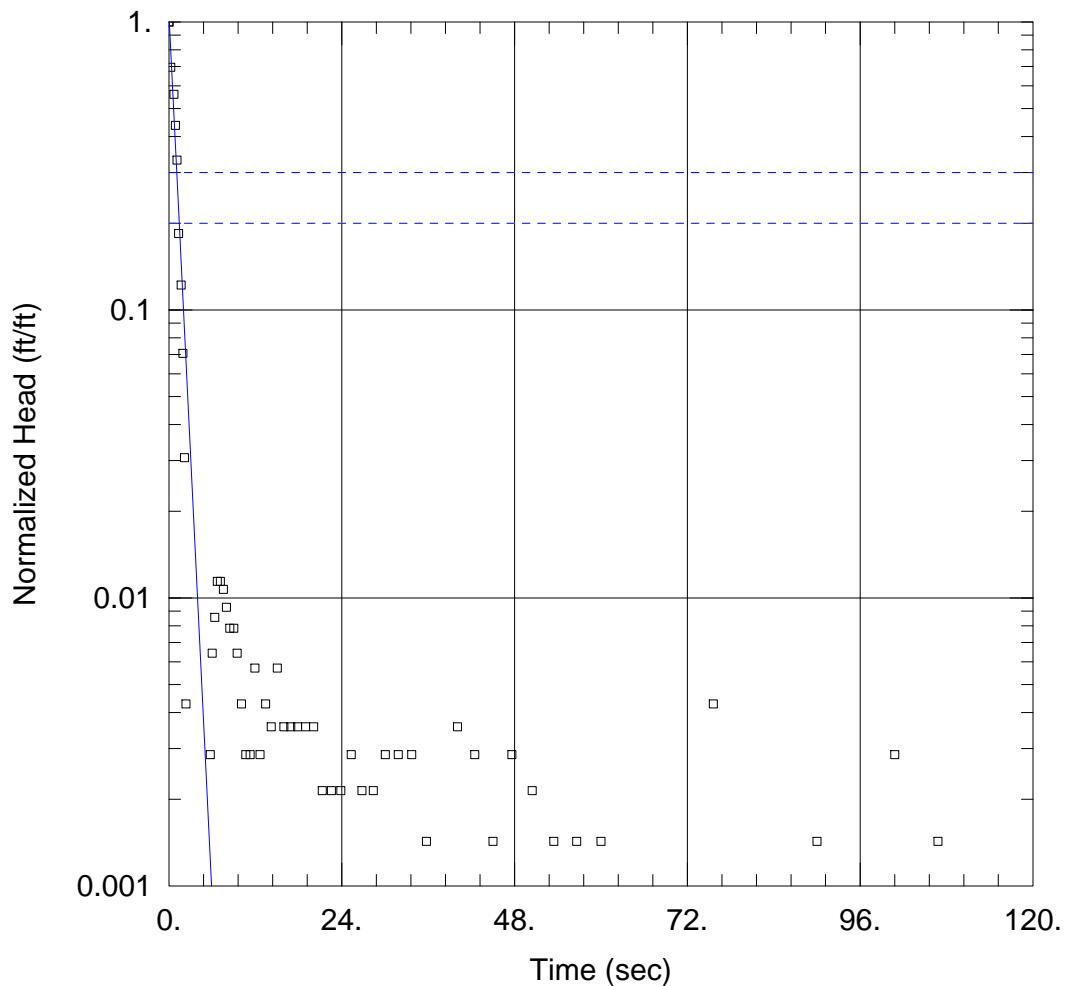
Data Set: C:\...\MW21D-IN3.aqt
 Date: 04/27/16

Time: 11:53:00

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-21D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 57.61 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-21D)

Initial Displacement: <u>3.285</u> ft	Static Water Column Height: <u>40.61</u> ft
Total Well Penetration Depth: <u>40.61</u> ft	Screen Length: <u>10.</u> ft
Casing Radius: <u>0.083</u> ft	Well Radius: <u>0.33</u> ft

SOLUTION

Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
<u>K</u> = <u>73.96</u> ft/day	<u>y0</u> = <u>3.356</u> ft

MW21D-OUT1

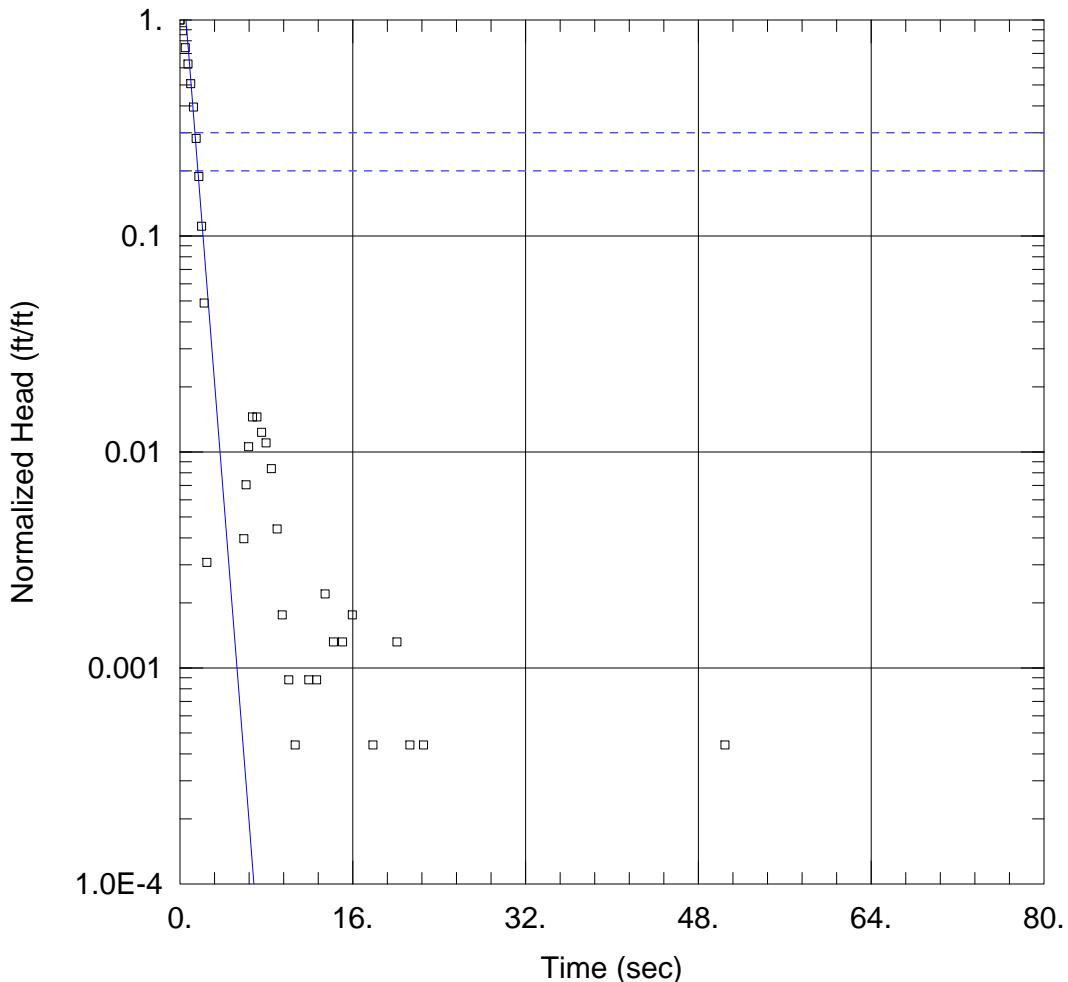
Data Set: C:\...\MW21D-OUT1.aqt
 Date: 04/27/16

Time: 11:56:01

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-21D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 57.61 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-21D)

Initial Displacement: 1.401 ft Static Water Column Height: 40.61 ft
 Total Well Penetration Depth: 40.61 ft Screen Length: 10. ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 97.19$ ft/day $y_0 = 1.51$ ft

MW21D-OUT2

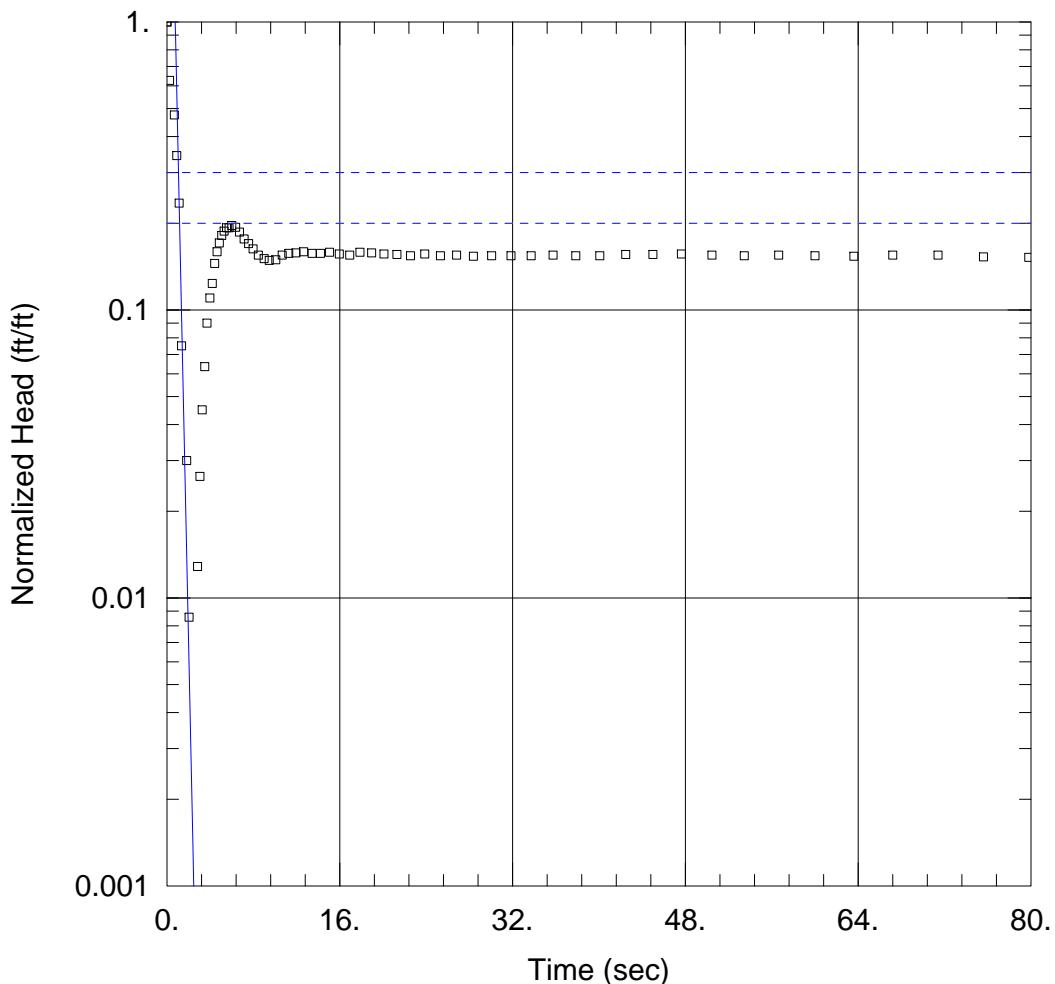
Data Set: C:\...\MW21D-OUT2.aqt
 Date: 04/27/16

Time: 11:59:50

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-21D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 57.61 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-21D)

Initial Displacement: <u>2.272</u> ft	Static Water Column Height: <u>40.61</u> ft
Total Well Penetration Depth: <u>40.61</u> ft	Screen Length: <u>10.</u> ft
Casing Radius: <u>0.083</u> ft	Well Radius: <u>0.33</u> ft

SOLUTION

Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
$K = 120.6$ ft/day	$y_0 = 5.16$ ft

MW21D-OUT3

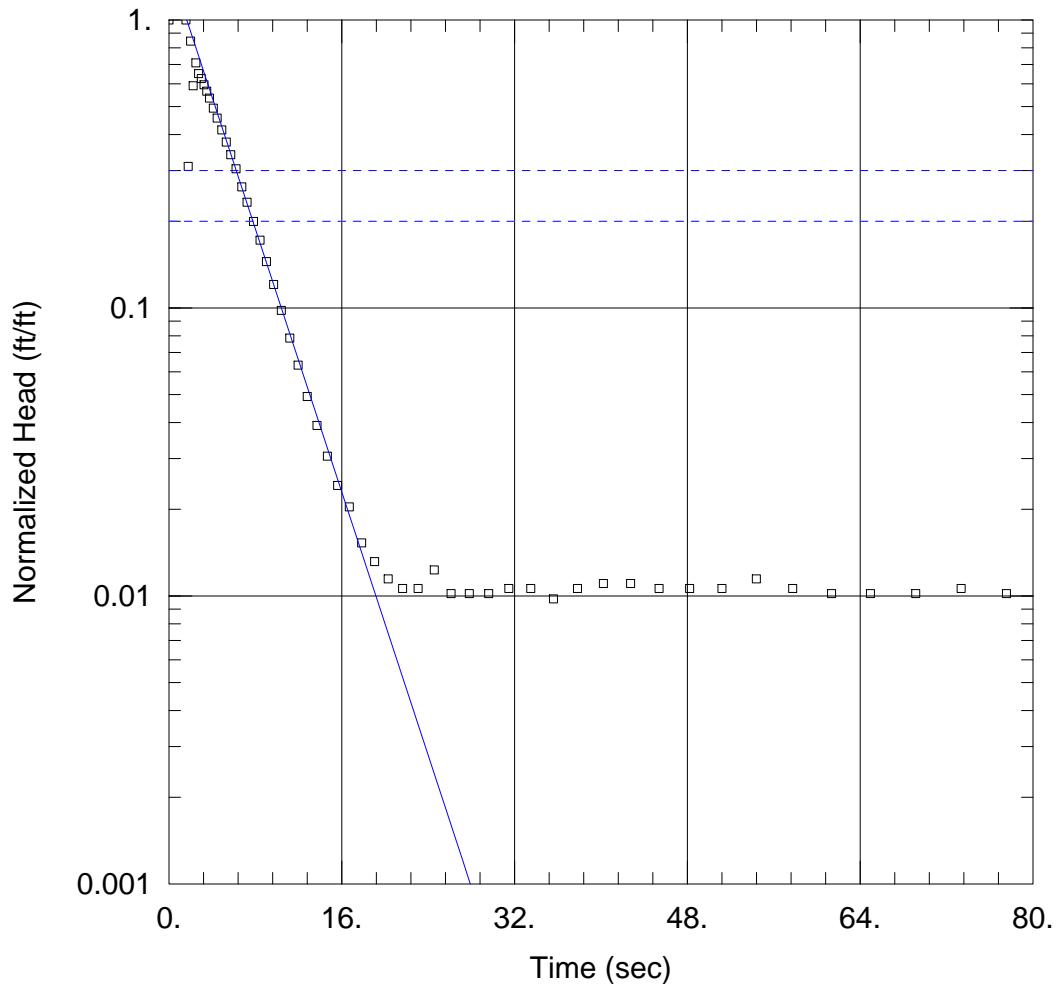
Data Set: C:\...\MW21D-OUT3.aqt
 Date: 04/27/16

Time: 12:05:17

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-21D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 57.61 ft Anisotropy Ratio (Kz/Kr): 0.04018

WELL DATA (MW-21D)

Initial Displacement: <u>1.4 ft</u>	Static Water Column Height: <u>40.61 ft</u>
Total Well Penetration Depth: <u>40.61 ft</u>	Screen Length: <u>10. ft</u>
Casing Radius: <u>0.083 ft</u>	Well Radius: <u>0.33 ft</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
$K = 495.3 \text{ ft/day}$	$y_0 = 30.58 \text{ ft}$

MW22D-IN1

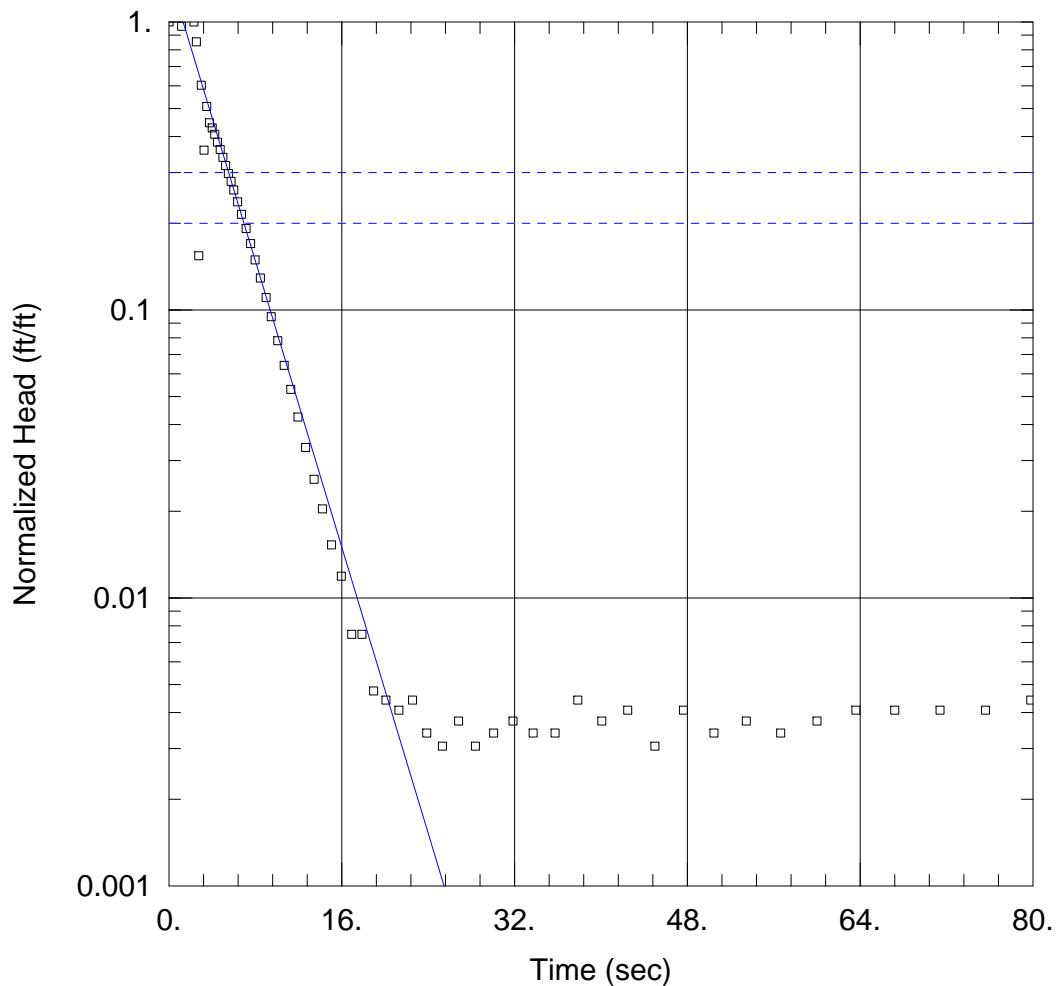
Data Set: C:\...\MW22D-in1.aqt
 Date: 04/27/16

Time: 12:10:01

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-22D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 58.38 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-22D)

Initial Displacement: <u>2.355 ft</u>	Static Water Column Height: <u>36.38 ft</u>
Total Well Penetration Depth: <u>36.38 ft</u>	Screen Length: <u>10. ft</u>
Casing Radius: <u>0.083 ft</u>	Well Radius: <u>0.33 ft</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
$K = 21.15 \text{ ft/day}$	$y_0 = 3.633 \text{ ft}$

MW22D-IN2

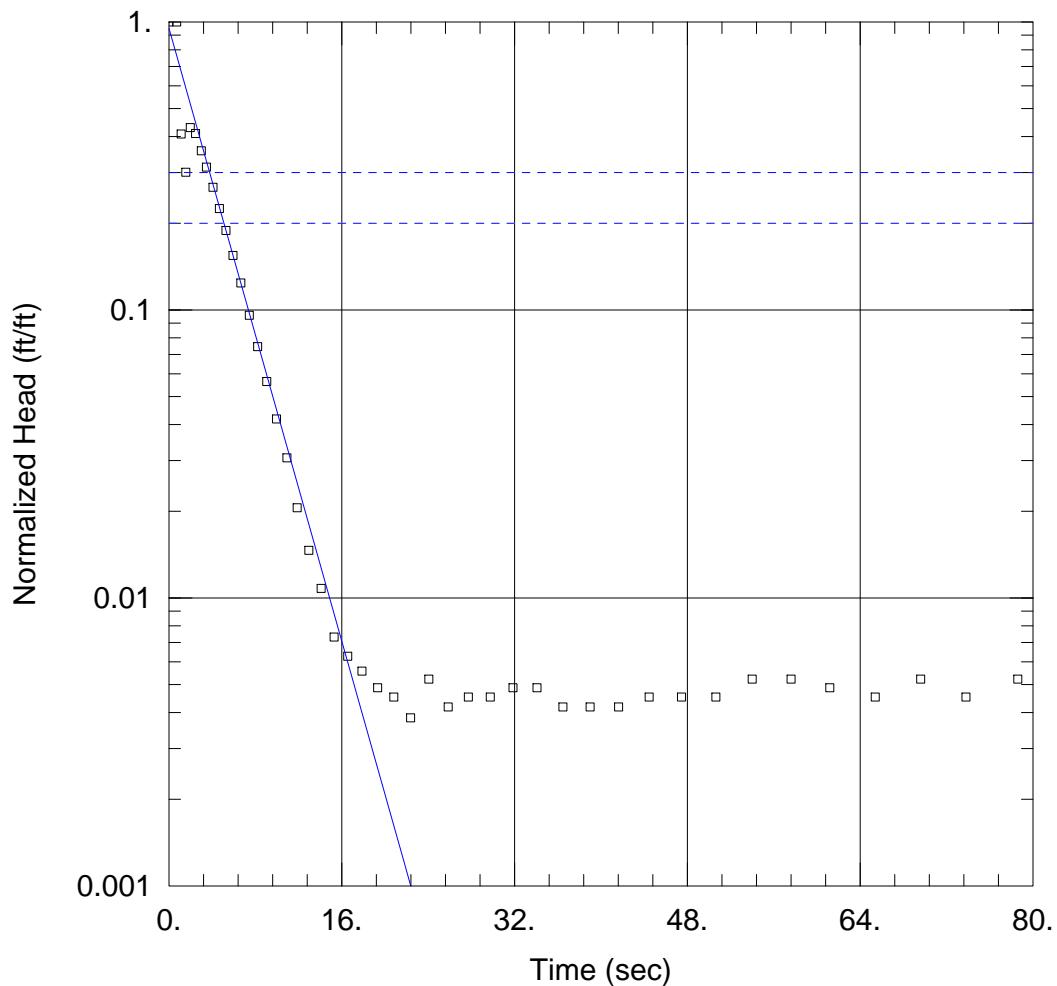
Data Set: C:\...\MW22D-in2.aqt
 Date: 04/27/16

Time: 12:12:56

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-22D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 58.39 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-22D)

Initial Displacement: 2.944 ft Static Water Column Height: 36.39 ft
 Total Well Penetration Depth: 36.39 ft Screen Length: 10. ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 22.99 \text{ ft/day}$ $y_0 = 4.283 \text{ ft}$

MW22D-IN3

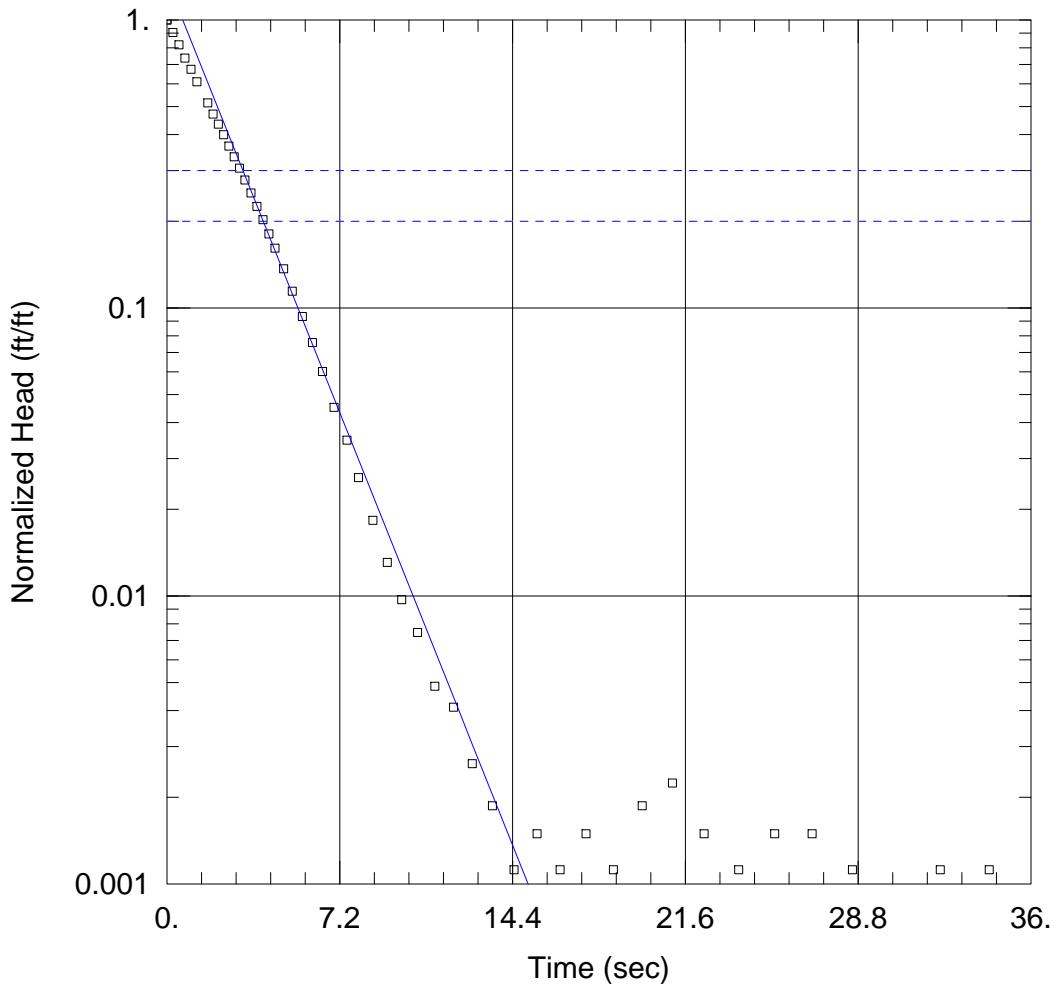
Data Set: C:\...\MW22D-in3.aqt
 Date: 04/27/16

Time: 12:13:57

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-22D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 58.39 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-22D)

Initial Displacement: <u>2.871 ft</u>	Static Water Column Height: <u>36.39 ft</u>
Total Well Penetration Depth: <u>36.39 ft</u>	Screen Length: <u>10. ft</u>
Casing Radius: <u>0.083 ft</u>	Well Radius: <u>0.33 ft</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
<u>K = 24.62 ft/day</u>	<u>y0 = 2.727 ft</u>

MW22D-OUT1

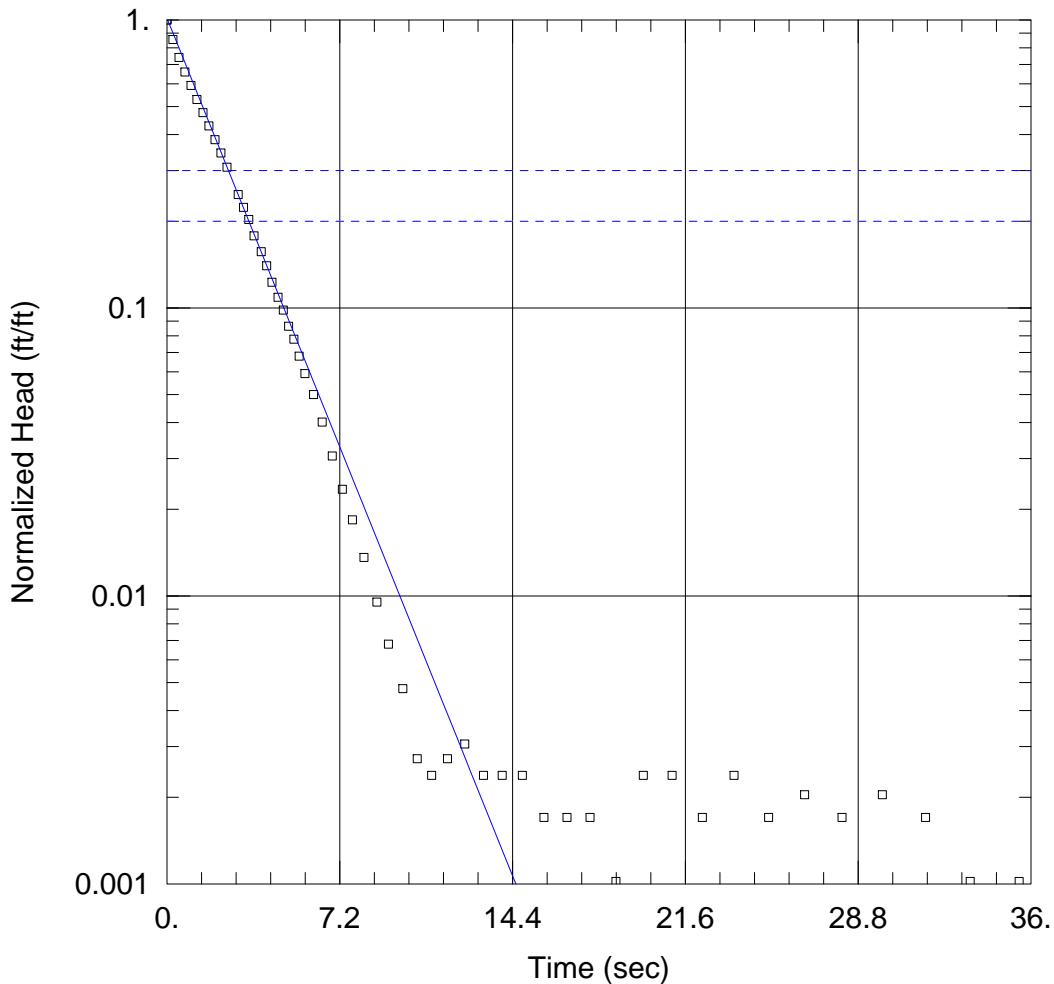
Data Set: C:\...\MW22D-out1.aqt
 Date: 04/27/16

Time: 12:15:43

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-22D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 58.39 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-22D)

Initial Displacement: <u>2.678 ft</u>	Static Water Column Height: <u>36.39 ft</u>
Total Well Penetration Depth: <u>36.39 ft</u>	Screen Length: <u>10. ft</u>
Casing Radius: <u>0.083 ft</u>	Well Radius: <u>0.33 ft</u>

SOLUTION

Aquifer Model: <u>Unconfined</u>	Solution Method: <u>Bouwer-Rice</u>
$K = 38.58 \text{ ft/day}$	$y_0 = 3.668 \text{ ft}$

MW22D-OUT2

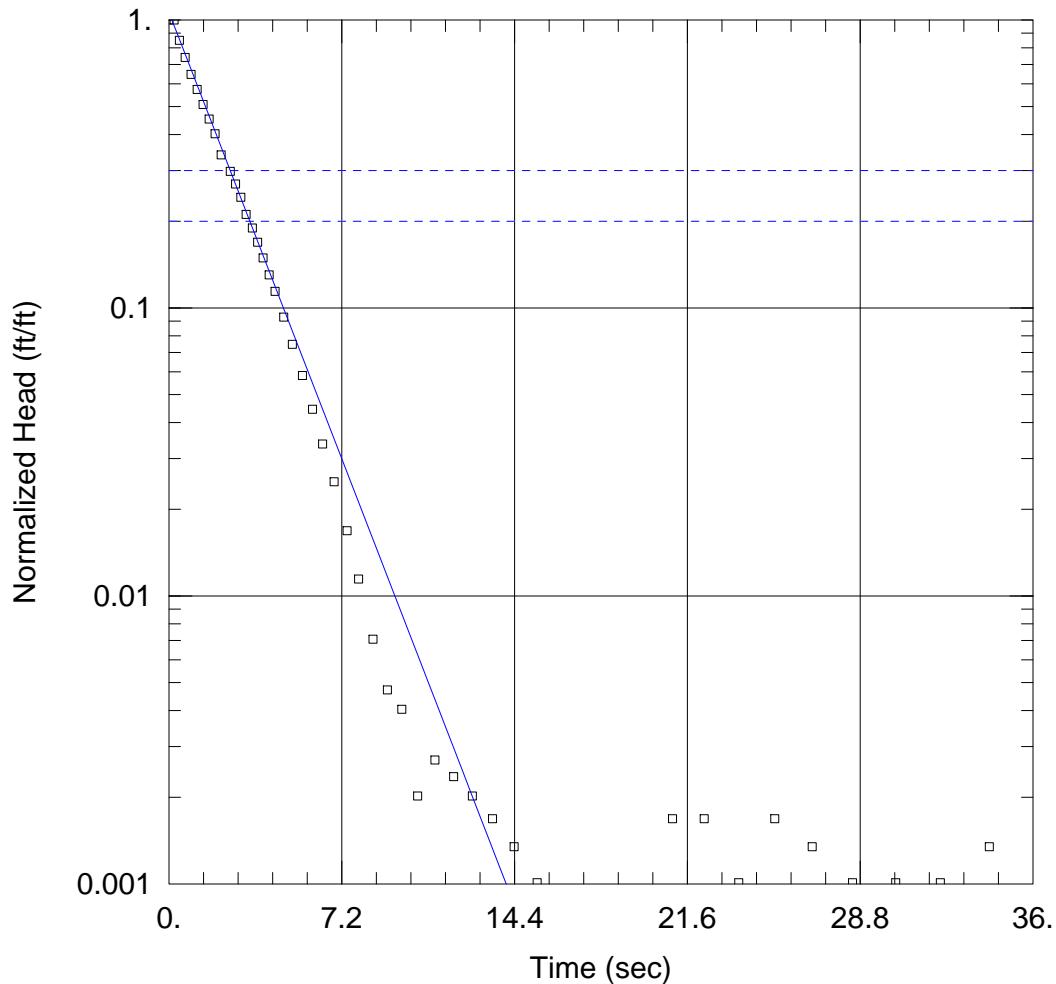
Data Set: C:\...\MW22D-out2.aqt
 Date: 04/27/16

Time: 12:17:26

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-22D
 Test Date: 12/1/15

AQUIFER DATA


Saturated Thickness: 58.39 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-22D)

Initial Displacement: 2.94 ft Static Water Column Height: 36.39 ft
 Total Well Penetration Depth: 36.39 ft Screen Length: 10. ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 38.28 \text{ ft/day}$ $y_0 = 2.984 \text{ ft}$

MW22D-OUT3

Data Set: C:\...\MW22D-out3.aqt
 Date: 04/27/16

Time: 12:18:14

PROJECT INFORMATION

Company: AECOM
 Client: UTC
 Project: 60414964
 Location: Bamberg, SC
 Test Well: MW-22D
 Test Date: 12/1/15

AQUIFER DATA

Saturated Thickness: 58.39 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-22D)

Initial Displacement: 2.97 ft Static Water Column Height: 36.39 ft
 Total Well Penetration Depth: 36.39 ft Screen Length: 10. ft
 Casing Radius: 0.083 ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice
 $K = 39.86 \text{ ft/day}$ $y_0 = 3.157 \text{ ft}$

APPENDIX D

LABORATORY ANALYTICAL DATA

- Laboratory Reports
 - Accutest Laboratories Southeast
 - Eurofins| Spectrum Analytical
- Data Validation Reports

Southeast

12/07/15

Technical Report for

United Technologies Corporation

**AECOMSCG: Delavan Spray Technologies; Bamberg, SC
60314964**

Accutest Job Number: FA29626

Sampling Date: 12/01/15

Report to:

**AECOM Environment
10 Patewood Dr Bldg VI, Suite 500
Greenville, SC 29615
doria.cullom@aecom.com**

ATTN: Doria Cullom

Total number of pages in report: 23

Test results contained within this data package meet the requirements
of the National Environmental Laboratory Accreditation Program
and/or state specific certification programs as applicable.

**Norm Farmer
Technical Director**

Client Service contact: Heather Wandrey 407-425-6700

Certifications: FL (E83510), LA (03051), KS (E-10327), IA (366), IL (200063), NC (573), NJ (FL002), SC (96038001)
DoD ELAP (L-A-B L2229), CA (2937), TX (T104704404), PA (68-03573), VA (460177),
AK, AR, GA, KY, MA, NV, OK, UT, WA

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.
Test results relate only to samples analyzed.

Table of Contents

Sections:

-1-	
Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	5
Section 4: Sample Results	6
4.1: FA29626-1: DPT-58-5.5-C	7
4.2: FA29626-2: DPT-58-5.5	9
4.3: FA29626-3: DPT-58-11	11
Section 5: Misc. Forms	13
5.1: Chain of Custody	14
Section 6: GC/MS Volatiles - QC Data Summaries	17
6.1: Method Blank Summary	18
6.2: Blank Spike Summary	20
6.3: Matrix Spike/Matrix Spike Duplicate Summary	22

Sample Summary

United Technologies Corporation

Job No: FA29626AECOMSCG: Delavan Spray Technologies; Bamberg, SC
Project No: 60314964

Sample Number	Collected Date	Time By	Received	Matrix Code	Type	Client Sample ID
FA29626-1	12/01/15	13:50	LARM	12/02/15	SO	Trip Blank Soil
FA29626-2	12/01/15	13:50	LARM	12/02/15	SO	Soil
FA29626-3	12/01/15	14:00	LARM	12/02/15	SO	Soil

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: United Technologies Corporation

Job No: FA29626

Site: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Report Date 12/7/2015 1:08:49 PM

2 Samples and 1 Trip Blank were collected on 12/01/2015 and were received at Accutest SE on 12/02/2015 properly preserved, at 3.4 Deg. C and intact. These Samples received an Accutest job number of FA29626. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: SO

Batch ID: VF2538

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29619-1MS, FA29619-1MSD were used as the QC samples indicated.

Blank Spike Recovery(s) for Bromoform are outside control limits. Recovery is biased high. Analyte is non-detect in associated samples; therefore data is not adversely affected.

Matrix Spike Duplicate Recovery(s) for Bromoform are outside control limits. Probable cause is due to matrix interference.

FA29626-1 for Bromoform: Associated BS recovery outside control limits.

FA29626-2 for Bromoform: Associated BS recovery outside control limits.

FA29626-3 for Bromoform: Associated BS recovery outside control limits.

Wet Chemistry By Method SM19 2540G

Matrix: SO

Batch ID: GN68896

Sample(s) FA29626-2DUP was used as the QC samples for Solids, Percent.

Accutest Laboratories Southeast (ALSE) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALSE and as stated on the COC. ALSE certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the ALSE Quality Manual except as noted above. This report is to be used in its entirety. ALSE is not responsible for any assumptions of data quality if partial data packages are used

Narrative prepared by:

Lovelie Metzgar, QA Officer (signature on file)

Date: December 7, 2015

Summary of Hits

Page 1 of 1

Job Number: FA29626

Account: United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Collected: 12/01/15

3

Lab Sample ID	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Analyte						

FA29626-1 DPT-58-5.5-C

No hits reported in this sample.

FA29626-2 DPT-58-5.5

Acetone	93.1	35	11	ug/kg	SW846 8260B
cis-1,2-Dichloroethylene	5.4	3.5	0.70	ug/kg	SW846 8260B
Tetrachloroethylene	7.1	3.5	1.1	ug/kg	SW846 8260B

FA29626-3 DPT-58-11

cis-1,2-Dichloroethylene	0.77 J	3.5	0.70	ug/kg	SW846 8260B
Tetrachloroethylene	1.2 J	3.5	1.1	ug/kg	SW846 8260B

Southeast

LABORATORIES

4

Sample Results

Report of Analysis

Report of Analysis

Client Sample ID:	DPT-58-5.5-C	Date Sampled:	12/01/15
Lab Sample ID:	FA29626-1	Date Received:	12/02/15
Matrix:	SO - Trip Blank Soil	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	F0074252.D	1	12/02/15	EP	n/a	n/a	VF2538
Run #2							

	Initial Weight	Final Volume
Run #1	5.00 g	5.0 ml
Run #2		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	15	ug/kg	
71-43-2	Benzene	ND	5.0	1.0	ug/kg	
75-27-4	Bromodichloromethane	ND	5.0	1.0	ug/kg	
75-25-2	Bromoform ^a	ND	5.0	1.0	ug/kg	
78-93-3	2-Butanone (MEK)	ND	25	8.5	ug/kg	
75-15-0	Carbon Disulfide	ND	5.0	1.5	ug/kg	
56-23-5	Carbon Tetrachloride	ND	5.0	1.0	ug/kg	
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/kg	
75-00-3	Chloroethane	ND	5.0	2.0	ug/kg	
67-66-3	Chloroform	ND	5.0	1.0	ug/kg	
124-48-1	Dibromochloromethane	ND	5.0	1.0	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.0	1.0	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	5.0	1.3	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.0	1.0	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
100-41-4	Ethylbenzene	ND	5.0	1.0	ug/kg	
591-78-6	2-Hexanone	ND	25	8.2	ug/kg	
74-83-9	Methyl Bromide	ND	5.0	2.2	ug/kg	
74-87-3	Methyl Chloride	ND	5.0	2.0	ug/kg	
75-09-2	Methylene Chloride	ND	10	4.0	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	5.4	ug/kg	
100-42-5	Styrene	ND	5.0	1.0	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.0	1.6	ug/kg	
108-88-3	Toluene	ND	5.0	1.0	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.3	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.3	ug/kg	
79-01-6	Trichloroethylene	ND	5.0	1.0	ug/kg	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: DPT-58-5.5-C
Lab Sample ID: FA29626-1
Matrix: SO - Trip Blank Soil
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	5.0	1.6	ug/kg	
1330-20-7	Xylene (total)	ND	15	2.1	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		75-124%
17060-07-0	1,2-Dichloroethane-D4	104%		72-135%
2037-26-5	Toluene-D8	103%		75-126%
460-00-4	4-Bromofluorobenzene	97%		71-133%

(a) Associated BS recovery outside control limits.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-58-5.5	Date Sampled:	12/01/15
Lab Sample ID:	FA29626-2	Date Received:	12/02/15
Matrix:	SO - Soil	Percent Solids:	87.0
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	F0074253.D	1	12/02/15	EP	n/a	n/a	VF2538
Run #2							

	Initial Weight	Final Volume
Run #1	8.19 g	5.0 ml
Run #2		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	93.1	35	11	ug/kg	
71-43-2	Benzene	ND	3.5	0.70	ug/kg	
75-27-4	Bromodichloromethane	ND	3.5	0.70	ug/kg	
75-25-2	Bromoform ^a	ND	3.5	0.70	ug/kg	
78-93-3	2-Butanone (MEK)	ND	18	6.0	ug/kg	
75-15-0	Carbon Disulfide	ND	3.5	1.0	ug/kg	
56-23-5	Carbon Tetrachloride	ND	3.5	0.70	ug/kg	
108-90-7	Chlorobenzene	ND	3.5	0.70	ug/kg	
75-00-3	Chloroethane	ND	3.5	1.4	ug/kg	
67-66-3	Chloroform	ND	3.5	0.70	ug/kg	
124-48-1	Dibromochloromethane	ND	3.5	0.70	ug/kg	
75-34-3	1,1-Dichloroethane	ND	3.5	0.70	ug/kg	
107-06-2	1,2-Dichloroethane	ND	3.5	0.70	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	3.5	0.93	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	5.4	3.5	0.70	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	3.5	0.70	ug/kg	
78-87-5	1,2-Dichloropropane	ND	3.5	0.70	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	3.5	0.70	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	3.5	0.70	ug/kg	
100-41-4	Ethylbenzene	ND	3.5	0.70	ug/kg	
591-78-6	2-Hexanone	ND	18	5.7	ug/kg	
74-83-9	Methyl Bromide	ND	3.5	1.5	ug/kg	
74-87-3	Methyl Chloride	ND	3.5	1.4	ug/kg	
75-09-2	Methylene Chloride	ND	7.0	2.8	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	18	3.8	ug/kg	
100-42-5	Styrene	ND	3.5	0.70	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	3.5	0.78	ug/kg	
127-18-4	Tetrachloroethylene	7.1	3.5	1.1	ug/kg	
108-88-3	Toluene	ND	3.5	0.70	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	3.5	0.92	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	3.5	0.88	ug/kg	
79-01-6	Trichloroethylene	ND	3.5	0.70	ug/kg	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-58-5.5	Date Sampled:	12/01/15
Lab Sample ID:	FA29626-2	Date Received:	12/02/15
Matrix:	SO - Soil	Percent Solids:	87.0
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
----------------	-----------------	---------------	-----------	------------	--------------	----------

75-01-4	Vinyl Chloride	ND	3.5	1.1	ug/kg	
1330-20-7	Xylene (total)	ND	11	1.5	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
----------------	-----------------------------	---------------	---------------	---------------

1868-53-7	Dibromofluoromethane	98%		75-124%
17060-07-0	1,2-Dichloroethane-D4	104%		72-135%
2037-26-5	Toluene-D8	101%		75-126%
460-00-4	4-Bromofluorobenzene	93%		71-133%

(a) Associated BS recovery outside control limits.

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-58-11	Date Sampled:	12/01/15
Lab Sample ID:	FA29626-3	Date Received:	12/02/15
Matrix:	SO - Soil	Percent Solids:	87.7
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	F0074255.D	1	12/02/15	EP	n/a	n/a	VF2538
Run #2							

	Initial Weight	Final Volume
Run #1	8.09 g	5.0 ml
Run #2		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	35	11	ug/kg	
71-43-2	Benzene	ND	3.5	0.70	ug/kg	
75-27-4	Bromodichloromethane	ND	3.5	0.70	ug/kg	
75-25-2	Bromoform ^a	ND	3.5	0.70	ug/kg	
78-93-3	2-Butanone (MEK)	ND	18	6.0	ug/kg	
75-15-0	Carbon Disulfide	ND	3.5	1.0	ug/kg	
56-23-5	Carbon Tetrachloride	ND	3.5	0.70	ug/kg	
108-90-7	Chlorobenzene	ND	3.5	0.70	ug/kg	
75-00-3	Chloroethane	ND	3.5	1.4	ug/kg	
67-66-3	Chloroform	ND	3.5	0.70	ug/kg	
124-48-1	Dibromochloromethane	ND	3.5	0.70	ug/kg	
75-34-3	1,1-Dichloroethane	ND	3.5	0.70	ug/kg	
107-06-2	1,2-Dichloroethane	ND	3.5	0.70	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	3.5	0.93	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	0.77	3.5	0.70	ug/kg	J
156-60-5	trans-1,2-Dichloroethylene	ND	3.5	0.70	ug/kg	
78-87-5	1,2-Dichloropropane	ND	3.5	0.70	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	3.5	0.70	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	3.5	0.70	ug/kg	
100-41-4	Ethylbenzene	ND	3.5	0.70	ug/kg	
591-78-6	2-Hexanone	ND	18	5.7	ug/kg	
74-83-9	Methyl Bromide	ND	3.5	1.5	ug/kg	
74-87-3	Methyl Chloride	ND	3.5	1.4	ug/kg	
75-09-2	Methylene Chloride	ND	7.0	2.8	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	18	3.8	ug/kg	
100-42-5	Styrene	ND	3.5	0.70	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	3.5	0.78	ug/kg	
127-18-4	Tetrachloroethylene	1.2	3.5	1.1	ug/kg	J
108-88-3	Toluene	ND	3.5	0.70	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	3.5	0.92	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	3.5	0.89	ug/kg	
79-01-6	Trichloroethylene	ND	3.5	0.70	ug/kg	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: DPT-58-11
Lab Sample ID: FA29626-3
Matrix: SO - Soil
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	3.5	1.1	ug/kg	
1330-20-7	Xylene (total)	ND	11	1.5	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	115%		75-124%
17060-07-0	1,2-Dichloroethane-D4	108%		72-135%
2037-26-5	Toluene-D8	102%		75-126%
460-00-4	4-Bromofluorobenzene	100%		71-133%

(a) Associated BS recovery outside control limits.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Southeast

LABORATORIES

Misc. Forms

5

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody

Accutest Laboratories Southeast Chain of Custody

4405 Vineland Road, Suite C-15 Orlando, FL 32811
TEL. 407-425-6700 • FAX: 407-425-0707

Accutest JOB # FA29626 PAGE 1 OF 1

Client / Reporting Information		Project Information		Analytical Information		Matrix Codes		
Company Name AT&T	Project Name AT&T Delays Spray Technologies Site	Address 16 Patterson Dr Bldg 1 #500	Street 4334 Main Hwy	City Greenville	State SC	City Bamberg	State SC	
City Greenville	State SC	Zip 29605	City Bamberg	State SC				
Project Contact DR. CLAUDIO ORTIZ	E-mail claudio.ortiz@att.com	Project # 60314964						
Phone # Blw - 734-0928	Fax #							
Sampler(s) Name(s) (Printed) Leslie Alexander / Randy Morgan		Client Purchase Order #						
Accutest Sample #	Field ID / Point of Collection	COLLECTION			CONTAINER INFORMATION			LAB USE ONLY
		DATE	TIME	SAMPLED BY	MATRIX	TOTAL # OF BOTTLES	OTHER	
1	DPT-SP-SS-C (tripblank)	12/1/15 1350	LA	SO	3			4.5-5.5'
2	DPT-SP-SS	12/1/15 1350	LA	SO	4	1		10-11'
3	DPT-SP-11	12/1/15 1400	LA	SO	4	1		
<p><i>Leslie Alexander 12/1/15</i></p>								
TURNAROUND TIME (Business Days)		Data Deliverable Information				Comments / Remarks		
<input checked="" type="checkbox"/> 10 Days Standard <input type="checkbox"/> 7 Day RUSH <input type="checkbox"/> 5 Day RUSH <input type="checkbox"/> 3 Day EMERGENCY <input type="checkbox"/> 2 Day EMERGENCY <input type="checkbox"/> 1 Day EMERGENCY <input type="checkbox"/> OTHER		Approved By: / Rush Code <div style="display: flex; justify-content: space-around;"> <div> <input type="checkbox"/> COMMERCIAL "A" (RESULTS ONLY) <input type="checkbox"/> COMMERCIAL "B" (RESULTS PLUS QC) <input type="checkbox"/> REDT1 (EPA LEVEL 3) <input type="checkbox"/> FULT1 (EPA LEVEL 4) </div> <div> <input checked="" type="checkbox"/> EDD'S <i>UTC - per SAW</i> </div> </div>						
Emergency or Rush T/A Data Available VIA Email or LabLink								
Sample Custody must be documented below each time samples change possession, including courier delivery.								
Relinquished by Sampler: <i>Leslie Alexander / Randy Morgan</i>	Date Time: <i>2/1/15</i>	Received By: <i>2 FEDEx B020 4594 7140</i>	Relinquished by: <i>3</i>	Date Time: <i>12-2-15</i>	Received By: <i>4 Comp (412) 09:30</i>			
Relinquished by: <i>Leslie Alexander / Randy Morgan</i>	Date Time: <i>6</i>	Received By: <i>7</i>	Relinquished by: <i>8</i>	Date Time:	Received By:			
Lab Use Only: Custody Seal in Place: <input checked="" type="checkbox"/> Y <input type="checkbox"/> N				Temp Blank Provided: <input checked="" type="checkbox"/> Y <input type="checkbox"/> N				
Preserved where Applicable: <input checked="" type="checkbox"/> Y <input type="checkbox"/> N				Total # of Coolers: <i>1</i>				
				Cooler Temperature (s) Celsius: <i>34</i>				

FA29626: Chain of Custody
Page 1 of 3

ACCUTEST LABORATORIES SAMPLE RECEIPT CONFIRMATION

ACCUTEST'S JOB NUMBER: FA 29 626

CLIENT: AECOM

PROJECT: 60314969

DATE/TIME RECEIVED: 12-2-15 09:30

(MM/DD/YY 24:00)

NUMBER OF COOLERS RECEIVED: 1

METHOD OF DELIVERY:

FEDEX

UPS

ACCUTEST COURIER

DELIVERY

OTHER:

AIRBILL NUMBERS: 8020 1594 7140

COOLER INFORMATION

- CUSTODY SEAL NOT PRESENT OR NOT INTACT
- CHAIN OF CUSTODY NOT RECEIVED (COC)
- ANALYSIS REQUESTED IS UNCLEAR OR MISSING
- SAMPLE DATES OR TIMES UNCLEAR OR MISSING
- TEMPERATURE CRITERIA NOT MET

TEMPERATURE INFORMATION

- IR THERM ID 1 CORR. FACTOR -0.4
- OBSERVED TEMPS: 3.8
- CORRECTED TEMPS: 3.4

(USED FOR LIMS)

SAMPLE INFORMATION

- INCORRECT NUMBER OF CONTAINERS USED
- SAMPLE RECEIVED IMPROPERLY PRESERVED
- INSUFFICIENT VOLUME FOR ANALYSIS
- DATES/TIMES ON COC DO NOT MATCH SAMPLE LABEL
- ID'S ON COC DO NOT MATCH LABEL
- VOC VIALS HAVE HEADSPACE (MACRO BUBBLES)
- BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED
- NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED
- UNCLEAR FILTERING OR COMPOSING INSTRUCTIONS
- SAMPLE CONTAINER(S) RECEIVED BROKEN
- 5035 FIELD KITS NOT RECEIVED WITHIN 48 HOURS
- BULK VOA SOIL JARS NOT RECEIVED WITHIN 48 HOURS
- % SOLIDS JAR NOT RECEIVED
- RESIDUAL CHLORINE PRESENT

LOT# _____

(APPLICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS)

TRIP BLANK INFORMATION

- TRIP BLANK PROVIDED
- TRIP BLANK NOT PROVIDED
- TRIP BLANK NOT ON COC
- TRIP BLANK INTACT
- TRIP BLANK NOT INTACT
- RECEIVED WATER TRIP BLANK
- RECEIVED SOIL TRIP BLANK

MISC. INFORMATION

NUMBER OF ENCORES ? 25-GRAM _____ 5-GRAM _____

NUMBER OF 5035 FIELD KITS ? 2+TB

NUMBER OF LAB FILTERED METALS ? _____

TEST STRIP LOT#s pH 0-3 204413A

pH 10-12 219813A

OTHER (specify) _____

SUMMARY OF COMMENTS: _____

_____TECHNICIAN SIGNATURE/DATE: je 12-2-15REVIEWER SIGNATURE/DATE: je 12-2-15

NF 11/15

receipt confirmation 111015.xls

FA29626: Chain of Custody

Page 2 of 3

FedEx Priority Mail Express kos Bill		8020 4594 7140	WED - 02 DEC 10:30A PRIORITY OVERNIGHT
1 From Date <u>12/11/15</u>		2 To Recipient's Name <u>Sandy A. Brown</u> Phone <u>407 425 6725</u>	
Company <u>Artist</u> Address <u>4405 W. 1st Rd.</u> City <u>Orlando</u>		3 Your Internal Billing Reference 4 Express Package Service <input type="checkbox"/> To next location. NOTE: Service order has changed. Please select carefully.	
5 Packaging <input type="checkbox"/> Standard value limit \$50. <input type="checkbox"/> FedEx Priority® <input type="checkbox"/> FedEx Pak® <input type="checkbox"/> FedEx Box <input type="checkbox"/> FedEx® Tube <input checked="" type="checkbox"/> Other		6 Special Handling and Delivery Signature Options	
Address <u>4405 W. 1st Rd.</u> <small>We can deliver to P.O. boxes or F.O. ZIP code.</small>		7 Payment <input type="checkbox"/> Bill to: <small>Enter FedEx Acct. No. or Credit Card No. below.</small>	
Address <u>Use this line for the HOLD location address or for continuation of your shipping address.</u>		8 <input type="checkbox"/> HOLD Monday <input type="checkbox"/> REQUERED SHIP DATE <input type="checkbox"/> for FedEx® Overnight <input type="checkbox"/> HOLD Saturday <input type="checkbox"/> REQUERED SHIP DATE <input type="checkbox"/> for FedEx® Saturday Delivery <input type="checkbox"/> REQUERED SHIP DATE <input type="checkbox"/> for FedEx® Priority Overnight and FedEx® Day™ next business day	
City <u>Orlando</u>		9 <input type="checkbox"/> No <input type="checkbox"/> Yes <small>Indicates if signature is required at recipient's address. If checked, a signature is required for delivery. For signature delivery, a signature is required for delivery. FedEx Express does not require a signature for delivery.</small>	
State <u>FL</u>		10 <input type="checkbox"/> Direct Signature <small>Indicates if signature is required at recipient's address. If checked, a signature is required for delivery. FedEx Express does not require a signature for delivery.</small>	
ZIP <u>32804-5528</u>		11 <input type="checkbox"/> Indirect Signature <small>Indicates if signature is required at recipient's address. If checked, a signature is required for delivery. FedEx Express does not require a signature for delivery.</small>	
		12 <input type="checkbox"/> Dry Ice <small>Dry Ice is UN 1945. FedEx Express does not ship dry ice.</small>	
13 <input type="checkbox"/> Cargo Only		14 <input type="checkbox"/> Credit Card Only	
15 <input type="checkbox"/> Credit Card Acct.		16 <input type="checkbox"/> Credit Card Acct.	
17 <input type="checkbox"/> Credit Card Acct.		18 <input type="checkbox"/> Credit Card Acct.	
19 <input type="checkbox"/> Credit Card Acct.		20 <input type="checkbox"/> Credit Card Acct.	
21 <input type="checkbox"/> Credit Card Acct.		22 <input type="checkbox"/> Credit Card Acct.	
23 <input type="checkbox"/> Credit Card Acct.		24 <input type="checkbox"/> Credit Card Acct.	
25 <input type="checkbox"/> Credit Card Acct.		26 <input type="checkbox"/> Credit Card Acct.	
27 <input type="checkbox"/> Credit Card Acct.		28 <input type="checkbox"/> Credit Card Acct.	
29 <input type="checkbox"/> Credit Card Acct.		30 <input type="checkbox"/> Credit Card Acct.	
31 <input type="checkbox"/> Credit Card Acct.		32 <input type="checkbox"/> Credit Card Acct.	
33 <input type="checkbox"/> Credit Card Acct.		34 <input type="checkbox"/> Credit Card Acct.	
35 <input type="checkbox"/> Credit Card Acct.		36 <input type="checkbox"/> Credit Card Acct.	
37 <input type="checkbox"/> Credit Card Acct.		38 <input type="checkbox"/> Credit Card Acct.	
39 <input type="checkbox"/> Credit Card Acct.		40 <input type="checkbox"/> Credit Card Acct.	
41 <input type="checkbox"/> Credit Card Acct.		42 <input type="checkbox"/> Credit Card Acct.	
43 <input type="checkbox"/> Credit Card Acct.		44 <input type="checkbox"/> Credit Card Acct.	
45 <input type="checkbox"/> Credit Card Acct.		46 <input type="checkbox"/> Credit Card Acct.	
47 <input type="checkbox"/> Credit Card Acct.		48 <input type="checkbox"/> Credit Card Acct.	
49 <input type="checkbox"/> Credit Card Acct.		50 <input type="checkbox"/> Credit Card Acct.	
51 <input type="checkbox"/> Credit Card Acct.		52 <input type="checkbox"/> Credit Card Acct.	
53 <input type="checkbox"/> Credit Card Acct.		54 <input type="checkbox"/> Credit Card Acct.	
55 <input type="checkbox"/> Credit Card Acct.		56 <input type="checkbox"/> Credit Card Acct.	
57 <input type="checkbox"/> Credit Card Acct.		58 <input type="checkbox"/> Credit Card Acct.	
59 <input type="checkbox"/> Credit Card Acct.		60 <input type="checkbox"/> Credit Card Acct.	
61 <input type="checkbox"/> Credit Card Acct.		62 <input type="checkbox"/> Credit Card Acct.	
63 <input type="checkbox"/> Credit Card Acct.		64 <input type="checkbox"/> Credit Card Acct.	
65 <input type="checkbox"/> Credit Card Acct.		66 <input type="checkbox"/> Credit Card Acct.	
67 <input type="checkbox"/> Credit Card Acct.		68 <input type="checkbox"/> Credit Card Acct.	
69 <input type="checkbox"/> Credit Card Acct.		70 <input type="checkbox"/> Credit Card Acct.	
71 <input type="checkbox"/> Credit Card Acct.		72 <input type="checkbox"/> Credit Card Acct.	
73 <input type="checkbox"/> Credit Card Acct.		74 <input type="checkbox"/> Credit Card Acct.	
75 <input type="checkbox"/> Credit Card Acct.		76 <input type="checkbox"/> Credit Card Acct.	
77 <input type="checkbox"/> Credit Card Acct.		78 <input type="checkbox"/> Credit Card Acct.	
79 <input type="checkbox"/> Credit Card Acct.		80 <input type="checkbox"/> Credit Card Acct.	
81 <input type="checkbox"/> Credit Card Acct.		82 <input type="checkbox"/> Credit Card Acct.	
83 <input type="checkbox"/> Credit Card Acct.		84 <input type="checkbox"/> Credit Card Acct.	
85 <input type="checkbox"/> Credit Card Acct.		86 <input type="checkbox"/> Credit Card Acct.	
87 <input type="checkbox"/> Credit Card Acct.		88 <input type="checkbox"/> Credit Card Acct.	
89 <input type="checkbox"/> Credit Card Acct.		90 <input type="checkbox"/> Credit Card Acct.	
91 <input type="checkbox"/> Credit Card Acct.		92 <input type="checkbox"/> Credit Card Acct.	
93 <input type="checkbox"/> Credit Card Acct.		94 <input type="checkbox"/> Credit Card Acct.	
95 <input type="checkbox"/> Credit Card Acct.		96 <input type="checkbox"/> Credit Card Acct.	
97 <input type="checkbox"/> Credit Card Acct.		98 <input type="checkbox"/> Credit Card Acct.	
99 <input type="checkbox"/> Credit Card Acct.		100 <input type="checkbox"/> Credit Card Acct.	
101 <input type="checkbox"/> Credit Card Acct.		102 <input type="checkbox"/> Credit Card Acct.	
103 <input type="checkbox"/> Credit Card Acct.		104 <input type="checkbox"/> Credit Card Acct.	
105 <input type="checkbox"/> Credit Card Acct.		106 <input type="checkbox"/> Credit Card Acct.	
107 <input type="checkbox"/> Credit Card Acct.		108 <input type="checkbox"/> Credit Card Acct.	
109 <input type="checkbox"/> Credit Card Acct.		110 <input type="checkbox"/> Credit Card Acct.	
111 <input type="checkbox"/> Credit Card Acct.		112 <input type="checkbox"/> Credit Card Acct.	
113 <input type="checkbox"/> Credit Card Acct.		114 <input type="checkbox"/> Credit Card Acct.	
115 <input type="checkbox"/> Credit Card Acct.		116 <input type="checkbox"/> Credit Card Acct.	
117 <input type="checkbox"/> Credit Card Acct.		118 <input type="checkbox"/> Credit Card Acct.	
119 <input type="checkbox"/> Credit Card Acct.		120 <input type="checkbox"/> Credit Card Acct.	
121 <input type="checkbox"/> Credit Card Acct.		122 <input type="checkbox"/> Credit Card Acct.	
123 <input type="checkbox"/> Credit Card Acct.		124 <input type="checkbox"/> Credit Card Acct.	
125 <input type="checkbox"/> Credit Card Acct.		126 <input type="checkbox"/> Credit Card Acct.	
127 <input type="checkbox"/> Credit Card Acct.		128 <input type="checkbox"/> Credit Card Acct.	
129 <input type="checkbox"/> Credit Card Acct.		130 <input type="checkbox"/> Credit Card Acct.	
131 <input type="checkbox"/> Credit Card Acct.		132 <input type="checkbox"/> Credit Card Acct.	
133 <input type="checkbox"/> Credit Card Acct.		134 <input type="checkbox"/> Credit Card Acct.	
135 <input type="checkbox"/> Credit Card Acct.		136 <input type="checkbox"/> Credit Card Acct.	
137 <input type="checkbox"/> Credit Card Acct.		138 <input type="checkbox"/> Credit Card Acct.	
139 <input type="checkbox"/> Credit Card Acct.		140 <input type="checkbox"/> Credit Card Acct.	
141 <input type="checkbox"/> Credit Card Acct.		142 <input type="checkbox"/> Credit Card Acct.	
143 <input type="checkbox"/> Credit Card Acct.		144 <input type="checkbox"/> Credit Card Acct.	
145 <input type="checkbox"/> Credit Card Acct.		146 <input type="checkbox"/> Credit Card Acct.	
147 <input type="checkbox"/> Credit Card Acct.		148 <input type="checkbox"/> Credit Card Acct.	
149 <input type="checkbox"/> Credit Card Acct.		150 <input type="checkbox"/> Credit Card Acct.	
151 <input type="checkbox"/> Credit Card Acct.		152 <input type="checkbox"/> Credit Card Acct.	
153 <input type="checkbox"/> Credit Card Acct.		154 <input type="checkbox"/> Credit Card Acct.	
155 <input type="checkbox"/> Credit Card Acct.		156 <input type="checkbox"/> Credit Card Acct.	
157 <input type="checkbox"/> Credit Card Acct.		158 <input type="checkbox"/> Credit Card Acct.	
159 <input type="checkbox"/> Credit Card Acct.		160 <input type="checkbox"/> Credit Card Acct.	
161 <input type="checkbox"/> Credit Card Acct.		162 <input type="checkbox"/> Credit Card Acct.	
163 <input type="checkbox"/> Credit Card Acct.		164 <input type="checkbox"/> Credit Card Acct.	
165 <input type="checkbox"/> Credit Card Acct.		166 <input type="checkbox"/> Credit Card Acct.	
167 <input type="checkbox"/> Credit Card Acct.		168 <input type="checkbox"/> Credit Card Acct.	
169 <input type="checkbox"/> Credit Card Acct.		170 <input type="checkbox"/> Credit Card Acct.	
171 <input type="checkbox"/> Credit Card Acct.		172 <input type="checkbox"/> Credit Card Acct.	
173 <input type="checkbox"/> Credit Card Acct.		174 <input type="checkbox"/> Credit Card Acct.	
175 <input type="checkbox"/> Credit Card Acct.		176 <input type="checkbox"/> Credit Card Acct.	
177 <input type="checkbox"/> Credit Card Acct.		178 <input type="checkbox"/> Credit Card Acct.	
179 <input type="checkbox"/> Credit Card Acct.		180 <input type="checkbox"/> Credit Card Acct.	
181 <input type="checkbox"/> Credit Card Acct.		182 <input type="checkbox"/> Credit Card Acct.	
183 <input type="checkbox"/> Credit Card Acct.		184 <input type="checkbox"/> Credit Card Acct.	
185 <input type="checkbox"/> Credit Card Acct.		186 <input type="checkbox"/> Credit Card Acct.	
187 <input type="checkbox"/> Credit Card Acct.		188 <input type="checkbox"/> Credit Card Acct.	
189 <input type="checkbox"/> Credit Card Acct.		190 <input type="checkbox"/> Credit Card Acct.	
191 <input type="checkbox"/> Credit Card Acct.		192 <input type="checkbox"/> Credit Card Acct.	
193 <input type="checkbox"/> Credit Card Acct.		194 <input type="checkbox"/> Credit Card Acct.	
195 <input type="checkbox"/> Credit Card Acct.		196 <input type="checkbox"/> Credit Card Acct.	
197 <input type="checkbox"/> Credit Card Acct.		198 <input type="checkbox"/> Credit Card Acct.	
199 <input type="checkbox"/> Credit Card Acct.		200 <input type="checkbox"/> Credit Card Acct.	
201 <input type="checkbox"/> Credit Card Acct.		202 <input type="checkbox"/> Credit Card Acct.	
203 <input type="checkbox"/> Credit Card Acct.		204 <input type="checkbox"/> Credit Card Acct.	
205 <input type="checkbox"/> Credit Card Acct.		206 <input type="checkbox"/> Credit Card Acct.	
207 <input type="checkbox"/> Credit Card Acct.		208 <input type="checkbox"/> Credit Card Acct.	
209 <input type="checkbox"/> Credit Card Acct.		210 <input type="checkbox"/> Credit Card Acct.	
211 <input type="checkbox"/> Credit Card Acct.		212 <input type="checkbox"/> Credit Card Acct.	
213 <input type="checkbox"/> Credit Card Acct.		214 <input type="checkbox"/> Credit Card Acct.	
215 <input type="checkbox"/> Credit Card Acct.		216 <input type="checkbox"/> Credit Card Acct.	
217 <input type="checkbox"/> Credit Card Acct.		218 <input type="checkbox"/> Credit Card Acct.	
219 <input type="checkbox"/> Credit Card Acct.		220 <input type="checkbox"/> Credit Card Acct.	
221 <input type="checkbox"/> Credit Card Acct.		222 <input type="checkbox"/> Credit Card Acct.	
223 <input type="checkbox"/> Credit Card Acct.		224 <input type="checkbox"/> Credit Card Acct.	
225 <input type="checkbox"/> Credit Card Acct.		226 <input type="checkbox"/> Credit Card Acct.	
227 <input type="checkbox"/> Credit Card Acct.		228 <input type="checkbox"/> Credit Card Acct.	
229 <input type="checkbox"/> Credit Card Acct.		230 <input type="checkbox"/> Credit Card Acct.	
231 <input type="checkbox"/> Credit Card Acct.		232 <input type="checkbox"/> Credit Card Acct.	
233 <input type="checkbox"/> Credit Card Acct.		234 <input type="checkbox"/> Credit Card Acct.	
235 <input type="checkbox"/> Credit Card Acct.		236 <input type="checkbox"/> Credit Card Acct.	
237 <input type="checkbox"/> Credit Card Acct.		238 <input type="checkbox"/> Credit Card Acct.	
239 <input type="checkbox"/> Credit Card Acct.		240 <input type="checkbox"/> Credit Card Acct.	
241 <input type="checkbox"/> Credit Card Acct.		242 <input type="checkbox"/> Credit Card Acct.	
243 <input type="checkbox"/> Credit Card Acct.		244 <input type="checkbox"/> Credit Card Acct.	
245 <input type="checkbox"/> Credit Card Acct.		246 <input type="checkbox"/> Credit Card Acct.	
247 <input type="checkbox"/> Credit Card Acct.		248 <input type="checkbox"/> Credit Card Acct.	
249 <input type="checkbox"/> Credit Card Acct.		250 <input type="checkbox"/> Credit Card Acct.	
251 <input type="checkbox"/> Credit Card Acct.		252 <input type="checkbox"/> Credit Card Acct.	
253 <input type="checkbox"/> Credit Card Acct.		254 <input type="checkbox"/> Credit Card Acct.	
255 <input type="checkbox"/> Credit Card Acct.		256 <input type="checkbox"/> Credit Card Acct.	
257 <input type="checkbox"/> Credit Card Acct.		258 <input type="checkbox"/> Credit Card Acct.	
259 <input type="checkbox"/> Credit Card Acct.		260 <input type="checkbox"/> Credit Card Acct.	
261 <input type="checkbox"/> Credit Card Acct.		262 <input type="checkbox"/> Credit Card Acct.	
263 <input type="checkbox"/> Credit Card Acct.		264 <input type="checkbox"/> Credit Card Acct.	
265 <input type="checkbox"/> Credit Card Acct.		266 <input type="checkbox"/> Credit Card Acct.	
267 <input type="checkbox"/> Credit Card Acct.		268 <input type="checkbox"/> Credit Card Acct.	
269 <input type="checkbox"/> Credit Card Acct.		270 <input type="checkbox"/> Credit Card Acct.	
271 <input type="checkbox"/> Credit Card Acct.		272 <input type="checkbox"/> Credit Card Acct.	
273 <input type="checkbox"/> Credit Card Acct.		274 <input type="checkbox"/> Credit Card Acct.	
275 <input type="checkbox"/> Credit Card Acct.		276 <input type="checkbox"/> Credit Card Acct.	
277 <input type="checkbox"/> Credit Card Acct.		278 <input type="checkbox"/> Credit Card Acct.	
279 <input type="checkbox"/> Credit Card Acct.		280 <input type="checkbox"/> Credit Card Acct.	
281 <input type="checkbox"/> Credit Card Acct.		282 <input type="checkbox"/> Credit Card Acct.	
283 <input type="checkbox"/> Credit Card Acct.		284 <input type="checkbox"/> Credit Card Acct.	
285 <input type="checkbox"/> Credit Card Acct.		286 <input type="checkbox"/> Credit Card Acct.	
287 <input type="checkbox"/> Credit Card Acct.		288 <input type="checkbox"/> Credit Card Acct.	
289 <input type="checkbox"/> Credit Card Acct.		290 <input type="checkbox"/> Credit Card Acct.	
291 <input type="checkbox"/> Credit Card Acct.		292 <input type="checkbox"/> Credit Card Acct.	
293 <input type="checkbox"/> Credit Card Acct.		294 <input type="checkbox"/> Credit Card Acct.	
295 <input type="checkbox"/> Credit Card Acct.		296 <input type="checkbox"/> Credit Card Acct.	
297 <input type="checkbox"/> Credit Card Acct.		298 <input type="checkbox"/> Credit Card Acct.	
299 <input type="checkbox"/> Credit Card Acct.		300 <input type="checkbox"/> Credit Card Acct.	
301 <input type="checkbox"/> Credit Card Acct.		302 <input type="checkbox"/> Credit Card Acct.	
303 <input type="checkbox"/> Credit Card Acct.		304 <input type="checkbox"/> Credit Card Acct.	
305 <input type="checkbox"/> Credit Card Acct.		306 <input type="checkbox"/> Credit Card Acct.	
307 <input type="checkbox"/> Credit Card Acct.		308 <input type="checkbox"/> Credit Card Acct.	
309 <input type="checkbox"/> Credit Card Acct.		310 <input type="checkbox"/> Credit Card Acct.	
311 <input type="checkbox"/> Credit Card Acct.		312 <input type="checkbox"/> Credit Card Acct.	
313 <input type="checkbox"/> Credit Card Acct.		314 <input type="checkbox"/> Credit Card Acct.	
315 <input type="checkbox"/> Credit Card Acct.		316 <input type="checkbox"/> Credit Card Acct.	
317 <input type="checkbox"/> Credit Card Acct.		318 <input type="checkbox"/> Credit Card Acct.	
319 <input type="checkbox"/> Credit Card Acct.		320 <input type="checkbox"/> Credit Card Acct.	
321 <input type="checkbox"/> Credit Card Acct.		322 <input type="checkbox"/> Credit Card Acct.	
323 <input type="checkbox"/> Credit Card Acct.		324 <input type="checkbox"/> Credit Card Acct.	
325 <input type="checkbox"/> Credit Card Acct.		326 <input type="checkbox"/> Credit Card Acct.	
327 <input type="checkbox"/> Credit Card Acct.		328 <input type="checkbox"/> Credit Card Acct.	
329 <input type="checkbox"/> Credit Card Acct.		330 <input type="checkbox"/> Credit Card Acct.	
331 <input type="checkbox"/> Credit Card Acct.		332 <input type="checkbox"/> Credit Card Acct.	
333 <input type="checkbox"/> Credit Card Acct.		334 <input type="checkbox"/> Credit Card Acct.	
335 <input type="checkbox"/> Credit Card Acct.		336 <input type="checkbox"/> Credit Card Acct.	
337 <input type="checkbox"/> Credit Card Acct.		338 <input type="checkbox"/> Credit Card Acct.	
339 <input type="checkbox"/> <			

FA29626: Chain of Custody
Page 3 of 3

Southeast

LABORATORIES

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Page 1 of 2

Job Number: FA29626

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF2538-MB	F0074243.D	1	12/02/15	EP	n/a	n/a	VF2538

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29626-1, FA29626-2, FA29626-3

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	15	ug/kg	
71-43-2	Benzene	ND	5.0	1.0	ug/kg	
75-27-4	Bromodichloromethane	ND	5.0	1.0	ug/kg	
75-25-2	Bromoform	ND	5.0	1.0	ug/kg	
78-93-3	2-Butanone (MEK)	ND	25	8.5	ug/kg	
75-15-0	Carbon Disulfide	ND	5.0	1.5	ug/kg	
56-23-5	Carbon Tetrachloride	ND	5.0	1.0	ug/kg	
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/kg	
75-00-3	Chloroethane	ND	5.0	2.0	ug/kg	
67-66-3	Chloroform	ND	5.0	1.0	ug/kg	
124-48-1	Dibromochloromethane	ND	5.0	1.0	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.0	1.0	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	5.0	1.3	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.0	1.0	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
100-41-4	Ethylbenzene	ND	5.0	1.0	ug/kg	
591-78-6	2-Hexanone	ND	25	8.2	ug/kg	
74-83-9	Methyl Bromide	ND	5.0	2.2	ug/kg	
74-87-3	Methyl Chloride	ND	5.0	2.0	ug/kg	
75-09-2	Methylene Chloride	ND	10	4.0	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	5.4	ug/kg	
100-42-5	Styrene	ND	5.0	1.0	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.0	1.6	ug/kg	
108-88-3	Toluene	ND	5.0	1.0	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.3	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.3	ug/kg	
79-01-6	Trichloroethylene	ND	5.0	1.0	ug/kg	
75-01-4	Vinyl Chloride	ND	5.0	1.6	ug/kg	
1330-20-7	Xylene (total)	ND	15	2.1	ug/kg	

Method Blank Summary

Page 2 of 2

Job Number: FA29626

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF2538-MB	F0074243.D	1	12/02/15	EP	n/a	n/a	VF2538

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29626-1, FA29626-2, FA29626-3

CAS No.	Surrogate Recoveries	Limits
1868-53-7	Dibromofluoromethane	101% 75-124%
17060-07-0	1,2-Dichloroethane-D4	103% 72-135%
2037-26-5	Toluene-D8	105% 75-126%
460-00-4	4-Bromofluorobenzene	95% 71-133%

CAS No.	Surrogate Recoveries	Limits
1868-53-7	Dibromofluoromethane	101% 75-124%
17060-07-0	1,2-Dichloroethane-D4	103% 72-135%
2037-26-5	Toluene-D8	105% 75-126%
460-00-4	4-Bromofluorobenzene	95% 71-133%

Blank Spike Summary

Page 1 of 2

Job Number: FA29626

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF2538-BS	F0074242.D	1	12/02/15	EP	n/a	n/a	VF2538

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29626-1, FA29626-2, FA29626-3

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
67-64-1	Acetone	250	236	94	61-152
71-43-2	Benzene	50	50.2	100	76-126
75-27-4	Bromodichloromethane	50	49.6	99	74-130
75-25-2	Bromoform	50	63.8	128*	76-127
78-93-3	2-Butanone (MEK)	250	235	94	75-137
75-15-0	Carbon Disulfide	50	51.6	103	72-122
56-23-5	Carbon Tetrachloride	50	52.5	105	78-133
108-90-7	Chlorobenzene	50	51.2	102	81-129
75-00-3	Chloroethane	50	47.8	96	68-133
67-66-3	Chloroform	50	48.9	98	72-123
124-48-1	Dibromochloromethane	50	57.2	114	76-127
75-34-3	1,1-Dichloroethane	50	47.5	95	73-125
107-06-2	1,2-Dichloroethane	50	48.1	96	74-128
75-35-4	1,1-Dichloroethylene	50	46.4	93	81-136
156-59-2	cis-1,2-Dichloroethylene	50	48.9	98	74-126
156-60-5	trans-1,2-Dichloroethylene	50	47.6	95	70-127
78-87-5	1,2-Dichloropropane	50	47.2	94	74-125
10061-01-5	cis-1,3-Dichloropropene	50	44.6	89	80-123
10061-02-6	trans-1,3-Dichloropropene	50	52.4	105	75-131
100-41-4	Ethylbenzene	50	51.4	103	77-123
591-78-6	2-Hexanone	250	247	99	72-133
74-83-9	Methyl Bromide	50	49.0	98	65-139
74-87-3	Methyl Chloride	50	49.3	99	71-144
75-09-2	Methylene Chloride	50	46.7	93	74-137
108-10-1	4-Methyl-2-pentanone (MIBK)	250	254	102	76-132
100-42-5	Styrene	50	50.1	100	78-125
79-34-5	1,1,2,2-Tetrachloroethane	50	55.1	110	71-126
127-18-4	Tetrachloroethylene	50	49.8	100	79-130
108-88-3	Toluene	50	50.6	101	76-124
71-55-6	1,1,1-Trichloroethane	50	47.5	95	70-129
79-00-5	1,1,2-Trichloroethane	50	53.7	107	74-124
79-01-6	Trichloroethylene	50	49.7	99	75-128
75-01-4	Vinyl Chloride	50	44.6	89	76-141
1330-20-7	Xylene (total)	150	149	99	80-129

* = Outside of Control Limits.

Blank Spike Summary

Page 2 of 2

Job Number: FA29626

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF2538-BS	F0074242.D	1	12/02/15	EP	n/a	n/a	VF2538

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29626-1, FA29626-2, FA29626-3

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	101%	75-124%
17060-07-0	1,2-Dichloroethane-D4	95%	72-135%
2037-26-5	Toluene-D8	97%	75-126%
460-00-4	4-Bromofluorobenzene	94%	71-133%

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 2

Job Number: FA29626

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29619-1MS	F0074250.D	1	12/02/15	EP	n/a	n/a	VF2538
FA29619-1MSD	F0074251.D	1	12/02/15	EP	n/a	n/a	VF2538
FA29619-1	F0074244.D	1	12/02/15	EP	n/a	n/a	VF2538

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29626-1, FA29626-2, FA29626-3

CAS No.	Compound	FA29619-1		Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
		ug/kg	Q								
67-64-1	Acetone	42 U	272	277	102	266	267	100	4	61-152/27	
71-43-2	Benzene	4.2 U	54.3	53.7	99	53.3	53.9	101	0	76-126/26	
75-27-4	Bromodichloromethane	4.2 U	54.3	59.0	109	53.3	59.4	111	1	74-130/25	
75-25-2	Bromoform	4.2 U	54.3	66.3	122	53.3	68.1	128*	3	76-127/26	
78-93-3	2-Butanone (MEK)	21 U	272	258	95	266	242	91	6	75-137/25	
75-15-0	Carbon Disulfide	4.2 U	54.3	50.3	93	53.3	49.7	93	1	72-122/29	
56-23-5	Carbon Tetrachloride	4.2 U	54.3	64.5	119	53.3	54.6	102	17	78-133/29	
108-90-7	Chlorobenzene	4.2 U	54.3	51.2	94	53.3	52.5	99	3	81-129/29	
75-00-3	Chloroethane	4.2 U	54.3	63.8	117	53.3	61.7	116	3	68-133/29	
67-66-3	Chloroform	4.2 U	54.3	62.2	114	53.3	51.9	97	18	72-123/26	
124-48-1	Dibromochloromethane	4.2 U	54.3	61.7	114	53.3	62.8	118	2	76-127/27	
75-34-3	1,1-Dichloroethane	4.2 U	54.3	62.0	114	53.3	61.4	115	1	73-125/27	
107-06-2	1,2-Dichloroethane	4.2 U	54.3	52.2	96	53.3	52.8	99	1	74-128/23	
75-35-4	1,1-Dichloroethylene	4.2 U	54.3	56.7	104	53.3	57.4	108	1	81-136/28	
156-59-2	cis-1,2-Dichloroethylene	4.2 U	54.3	58.3	107	53.3	51.7	97	12	74-126/26	
156-60-5	trans-1,2-Dichloroethylene	4.2 U	54.3	62.3	115	53.3	61.0	114	2	70-127/27	
78-87-5	1,2-Dichloropropane	4.2 U	54.3	54.3	100	53.3	55.4	104	2	74-125/25	
10061-01-5	cis-1,3-Dichloropropene	4.2 U	54.3	55.0	101	53.3	57.3	108	4	80-123/26	
10061-02-6	trans-1,3-Dichloropropene	4.2 U	54.3	59.0	109	53.3	60.3	113	2	75-131/28	
100-41-4	Ethylbenzene	4.2 U	54.3	51.4	95	53.3	52.4	98	2	77-123/31	
591-78-6	2-Hexanone	21 U	272	233	86	266	235	88	1	72-133/26	
74-83-9	Methyl Bromide	4.2 U	54.3	67.9	125	53.3	60.0	113	12	65-139/31	
74-87-3	Methyl Chloride	4.2 U	54.3	60.5	111	53.3	62.8	118	4	71-144/27	
75-09-2	Methylene Chloride	8.4 U	54.3	62.0	114	53.3	60.5	114	2	74-137/28	
108-10-1	4-Methyl-2-pentanone (MIBK)	21 U	272	250	92	266	253	95	1	76-132/26	
100-42-5	Styrene	4.2 U	54.3	48.7	90	53.3	50.8	95	4	78-125/30	
79-34-5	1,1,2,2-Tetrachloroethane	4.2 U	54.3	57.5	106	53.3	58.8	110	2	71-126/30	
127-18-4	Tetrachloroethylene	4.2 U	54.3	57.4	106	53.3	61.4	115	7	79-130/31	
108-88-3	Toluene	4.2 U	54.3	52.8	97	53.3	53.7	101	2	76-124/30	
71-55-6	1,1,1-Trichloroethane	4.2 U	54.3	54.1	100	53.3	49.2	92	9	70-129/27	
79-00-5	1,1,2-Trichloroethane	4.2 U	54.3	55.9	103	53.3	57.0	107	2	74-124/28	
79-01-6	Trichloroethylene	4.2 U	54.3	52.5	97	53.3	53.0	99	1	75-128/27	
75-01-4	Vinyl Chloride	4.2 U	54.3	59.1	109	53.3	59.5	112	1	76-141/27	
1330-20-7	Xylene (total)	13 U	163	147	90	160	153	96	4	80-129/30	

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 2

Job Number: FA29626

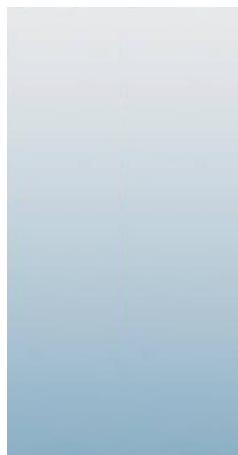
Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29619-1MS	F0074250.D	1	12/02/15	EP	n/a	n/a	VF2538
FA29619-1MSD	F0074251.D	1	12/02/15	EP	n/a	n/a	VF2538
FA29619-1	F0074244.D	1	12/02/15	EP	n/a	n/a	VF2538

The QC reported here applies to the following samples:

Method: SW846 8260B


FA29626-1, FA29626-2, FA29626-3

CAS No.	Surrogate Recoveries	MS	MSD	FA29619-1	Limits
1868-53-7	Dibromofluoromethane	117%	100%	101%	75-124%
17060-07-0	1,2-Dichloroethane-D4	99%	97%	102%	72-135%
2037-26-5	Toluene-D8	98%	100%	125%	75-126%
460-00-4	4-Bromofluorobenzene	98%	97%	103%	71-133%

* = Outside of Control Limits.

12/18/15

Southeast

LABORATORIES

Technical Report for

United Technologies Corporation

AECOMSCG: Delavan Spray Technologies; Bamberg, SC
60314964

Accutest Job Number: FA29657

Sampling Date: 12/02/15

Report to:

AECOM Environment
10 Patewood Dr Bldg VI, Suite 500
Greenville, SC 29615
doria.cullom@aecom.com

ATTN: Doria Cullom

Total number of pages in report: **58**

Test results contained within this data package meet the requirements
of the National Environmental Laboratory Accreditation Program
and/or state specific certification programs as applicable.

Norm Farmer
Technical Director

Client Service contact: Heather Wandrey 407-425-6700

Certifications: FL (E83510), LA (03051), KS (E-10327), IA (366), IL (200063), NC (573), NJ (FL002), SC (96038001)
DoD ELAP (L-A-B L2229), CA (2937), TX (T104704404), PA (68-03573), VA (460177),
AK, AR, GA, KY, MA, NV, OK, UT, WA

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.
Test results relate only to samples analyzed.

Table of Contents

Sections:

-1-	
Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	6
Section 4: Sample Results	8
4.1: FA29657-1: DPT-59-3-C	9
4.2: FA29657-2: DPT-59-3	11
4.3: FA29657-3: DPT-59-10	13
4.4: FA29657-4: DPT-60-1	15
4.5: FA29657-5: DPT-60-8-D	17
4.6: FA29657-6: DPT-60-8	19
4.7: FA29657-7: DPT-61-6	21
4.8: FA29657-8: DPT-61-8	23
4.9: FA29657-9: DPT-61-8-A	25
Section 5: Misc. Forms	27
5.1: Chain of Custody	28
Section 6: GC/MS Volatiles - QC Data Summaries	31
6.1: Method Blank Summary	32
6.2: Blank Spike Summary	41
6.3: Matrix Spike/Matrix Spike Duplicate Summary	50

Sample Summary

United Technologies Corporation

Job No: FA29657

AECOMSCG: Delavan Spray Technologies; Bamberg, SC
Project No: 60314964

Sample Number	Collected Date	Time By	Received	Matrix Code	Type	Client Sample ID
FA29657-1	12/02/15	12:05	LARM	12/03/15	SO	Trip Blank Soil
FA29657-2	12/02/15	12:05	LARM	12/03/15	SO	Soil
FA29657-2D	12/02/15	12:05	LARM	12/03/15	SO	Soil Dup/MSD
FA29657-2S	12/02/15	12:05	LARM	12/03/15	SO	Soil Matrix Spike
FA29657-3	12/02/15	12:30	LARM	12/03/15	SO	Soil
FA29657-4	12/02/15	15:30	LARM	12/03/15	SO	Soil
FA29657-5	12/02/15	15:35	LARM	12/03/15	AQ	Equipment Blank
FA29657-6	12/02/15	15:40	LARM	12/03/15	SO	Soil
FA29657-7	12/02/15	16:40	LARM	12/03/15	SO	Soil
FA29657-8	12/02/15	16:50	LARM	12/03/15	SO	Soil
FA29657-9	12/02/15	16:50	LARM	12/03/15	SO	Soil

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: United Technologies Corporation

Job No: FA29657

Site: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Report Date 12/18/2015 10:15:56 AM

8 Samples and 1 Trip Blank were collected on 12/02/2015 and were received at Accutest SE on 12/03/2015 properly preserved, at 3.6 Deg. C and intact. These Samples received an Accutest job number of FA29657. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ

Batch ID: VP1389

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29420-7MS, FA29420-7MSD were used as the QC samples indicated.

Matrix Spike Recovery(s) for Bromoform, Chlorobenzene, Dibromochloromethane are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike.

Matrix Spike Duplicate Recovery(s) for Bromoform, Chlorobenzene, cis-1,3-Dichloropropene, Dibromochloromethane, trans-1,3-Dichloropropene are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike.

Matrix: SO

Batch ID: VC4481

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29657-9MS, FA29657-9MSD were used as the QC samples indicated.

Matrix Spike / Matrix Spike Duplicate Recovery(s) for Tetrachloroethylene are outside control limits. Outside control limits due to high level in sample relative to spike amount.

FA29657-9 for Tetrachloroethylene: Results from different vials are not consistent; higher results were reported.

Matrix: SO

Batch ID: VF2539

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29644-7MS, FA29644-7MSD were used as the QC samples indicated.

Blank Spike Recovery(s) for Bromoform, Chloroform, Dibromochloromethane are outside control limits. Recoveries are biased high. Analytes are non-detect in associated samples; therefore data is not adversely affected.

FA29657-6 for Bromoform: Associated BS recovery outside control limits.

FA29657-6 for Chloroform: Associated BS recovery outside control limits.

FA29657-6 for Dibromochloromethane: Associated BS recovery outside control limits.

FA29657-7 for Bromoform: Associated BS recovery outside control limits.

FA29657-7 for Chloroform: Associated BS recovery outside control limits.

FA29657-7 for Dibromochloromethane: Associated BS recovery outside control limits.

Matrix: SO

Batch ID: VF2540

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29644-12MS, FA29644-12MSD were used as the QC samples indicated.

Matrix Spike / Matrix Spike Duplicate Recovery(s) for Tetrachloroethylene are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike.

RPD(s) for MSD for Tetrachloroethylene are outside control limits for sample FA29644-12MSD. Probable cause is due to sample non-homogeneity.

Sample(s) FA29644-12MSD has surrogates outside control limits. Probable cause is due to matrix interference.

Friday, December 18, 2015

Page 1 of 2

Volatiles by GCMS By Method SW846 8260B

Matrix: SO

Batch ID: VY1033

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29657-2MS, FA29657-2MSD were used as the QC samples indicated.

Matrix Spike Recovery(s) for 1,1,2,2-Tetrachloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethylene, 1,2-Dichloropropane, 4-Methyl-2-pentanone (MIBK), Bromoform, Carbon Disulfide, Carbon Tetrachloride, Chlorobenzene, Chloroethane, cis-1,2-Dichloroethylene, cis-1,3-Dichloropropene, Dibromochloromethane, Ethylbenzene, Methylene Chloride, Styrene, Tetrachloroethylene, Toluene, trans-1,3-Dichloropropene, Vinyl Chloride, Xylene (total) are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike.

Matrix Spike Duplicate Recovery(s) for 1,1-Dichloroethylene, 4-Methyl-2-pentanone (MIBK), Chloroethane, Styrene are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike.

RPD(s) for MSD for Tetrachloroethylene are outside control limits for sample FA29657-2MSD. Probable cause is due to sample non-homogeneity.

Wet Chemistry By Method SM19 2540G

Matrix: SO

Batch ID: GN68885

Sample(s) FA29657-2DUP was used as the QC samples for Solids, Percent.

Matrix: SO

Batch ID: GN68903

Sample(s) FA29674-1DUP was used as the QC samples for Solids, Percent.

Accutest Laboratories Southeast (ALSE) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALSE and as stated on the COC. ALSE certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the ALSE Quality Manual except as noted above. This report is to be used in its entirety. ALSE is not responsible for any assumptions of data quality if partial data packages are used

Narrative prepared by:

Date: December 18, 2015

Lovelie Metzgar, QA Officer (signature on file)

Summary of Hits

Page 1 of 2

Job Number: FA29657

Account: United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Collected: 12/02/15

3

Lab Sample ID	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
---------------	------------------	-----------------	----	-----	-------	--------

FA29657-1 DPT-59-3-C

No hits reported in this sample.

FA29657-2 DPT-59-3

Acetone	19.0 J	41	12	ug/kg	SW846 8260B
Tetrachloroethylene	21.3	4.1	1.3	ug/kg	SW846 8260B

FA29657-3 DPT-59-10

Tetrachloroethylene	2.4 J	4.8	1.6	ug/kg	SW846 8260B
---------------------	-------	-----	-----	-------	-------------

FA29657-4 DPT-60-1

Tetrachloroethylene	75.9	3.7	1.2	ug/kg	SW846 8260B
---------------------	------	-----	-----	-------	-------------

FA29657-5 DPT-60-8-D

No hits reported in this sample.

FA29657-6 DPT-60-8

cis-1,2-Dichloroethylene	1.0 J	4.1	0.81	ug/kg	SW846 8260B
Tetrachloroethylene	70.9	4.1	1.3	ug/kg	SW846 8260B

FA29657-7 DPT-61-6

Tetrachloroethylene	343	300	98	ug/kg	SW846 8260B
1,1,1-Trichloroethane	1.4 J	4.5	1.2	ug/kg	SW846 8260B

FA29657-8 DPT-61-8

cis-1,2-Dichloroethylene	1.4 J	4.6	0.92	ug/kg	SW846 8260B
Tetrachloroethylene	178 J	260	84	ug/kg	SW846 8260B
1,1,1-Trichloroethane	2.5 J	4.6	1.2	ug/kg	SW846 8260B
1,1,2-Trichloroethane	1.7 J	4.6	1.2	ug/kg	SW846 8260B
Trichloroethylene	1.0 J	4.6	0.92	ug/kg	SW846 8260B

FA29657-9 DPT-61-8-A

cis-1,2-Dichloroethylene	1.2 J	4.4	0.87	ug/kg	SW846 8260B
Tetrachloroethylene ^a	699	250	83	ug/kg	SW846 8260B
1,1,1-Trichloroethane	1.2 J	4.4	1.1	ug/kg	SW846 8260B
1,1,2-Trichloroethane	1.4 J	4.4	1.1	ug/kg	SW846 8260B

Summary of Hits

Page 2 of 2

Job Number: FA29657

Account: United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Collected: 12/02/15

3

Lab Sample ID	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Analyte						

(a) Results from different vials are not consistent; higher results were reported.

Southeast

LABORATORIES

4

Sample Results

Report of Analysis

Report of Analysis

Client Sample ID:	DPT-59-3-C	Date Sampled:	12/02/15
Lab Sample ID:	FA29657-1	Date Received:	12/03/15
Matrix:	SO - Trip Blank Soil	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Y24508.D	1	12/03/15	AD	n/a	n/a	VY1033
Run #2							

	Initial Weight	Final Volume
Run #1	5.00 g	5.0 ml
Run #2		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	15	ug/kg	
71-43-2	Benzene	ND	5.0	1.0	ug/kg	
75-27-4	Bromodichloromethane	ND	5.0	1.0	ug/kg	
75-25-2	Bromoform	ND	5.0	1.0	ug/kg	
78-93-3	2-Butanone (MEK)	ND	25	8.5	ug/kg	
75-15-0	Carbon Disulfide	ND	5.0	1.5	ug/kg	
56-23-5	Carbon Tetrachloride	ND	5.0	1.0	ug/kg	
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/kg	
75-00-3	Chloroethane	ND	5.0	2.0	ug/kg	
67-66-3	Chloroform	ND	5.0	1.0	ug/kg	
124-48-1	Dibromochloromethane	ND	5.0	1.0	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.0	1.0	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	5.0	1.3	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.0	1.0	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
100-41-4	Ethylbenzene	ND	5.0	1.0	ug/kg	
591-78-6	2-Hexanone	ND	25	8.2	ug/kg	
74-83-9	Methyl Bromide	ND	5.0	2.2	ug/kg	
74-87-3	Methyl Chloride	ND	5.0	2.0	ug/kg	
75-09-2	Methylene Chloride	ND	10	4.0	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	5.4	ug/kg	
100-42-5	Styrene	ND	5.0	1.0	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.0	1.6	ug/kg	
108-88-3	Toluene	ND	5.0	1.0	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.3	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.3	ug/kg	
79-01-6	Trichloroethylene	ND	5.0	1.0	ug/kg	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: DPT-59-3-C
Lab Sample ID: FA29657-1
Matrix: SO - Trip Blank Soil
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	5.0	1.6	ug/kg	
1330-20-7	Xylene (total)	ND	15	2.1	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	101%		75-124%
17060-07-0	1,2-Dichloroethane-D4	100%		72-135%
2037-26-5	Toluene-D8	100%		75-126%
460-00-4	4-Bromofluorobenzene	98%		71-133%

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: DPT-59-3
Lab Sample ID: FA29657-2
Matrix: SO - Soil
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Date Sampled: 12/02/15

Date Received: 12/03/15

Percent Solids: 83.7

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Y24509.D	1	12/03/15	AD	n/a	n/a	VY1033
Run #2							

	Initial Weight	Final Volume
Run #1	7.23 g	5.0 ml
Run #2		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	19.0	41	12	ug/kg	J
71-43-2	Benzene	ND	4.1	0.83	ug/kg	
75-27-4	Bromodichloromethane	ND	4.1	0.83	ug/kg	
75-25-2	Bromoform	ND	4.1	0.83	ug/kg	
78-93-3	2-Butanone (MEK)	ND	21	7.0	ug/kg	
75-15-0	Carbon Disulfide	ND	4.1	1.2	ug/kg	
56-23-5	Carbon Tetrachloride	ND	4.1	0.83	ug/kg	
108-90-7	Chlorobenzene	ND	4.1	0.83	ug/kg	
75-00-3	Chloroethane	ND	4.1	1.7	ug/kg	
67-66-3	Chloroform	ND	4.1	0.83	ug/kg	
124-48-1	Dibromochloromethane	ND	4.1	0.83	ug/kg	
75-34-3	1,1-Dichloroethane	ND	4.1	0.83	ug/kg	
107-06-2	1,2-Dichloroethane	ND	4.1	0.83	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	4.1	1.1	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	4.1	0.83	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	4.1	0.83	ug/kg	
78-87-5	1,2-Dichloropropane	ND	4.1	0.83	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	4.1	0.83	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	4.1	0.83	ug/kg	
100-41-4	Ethylbenzene	ND	4.1	0.83	ug/kg	
591-78-6	2-Hexanone	ND	21	6.7	ug/kg	
74-83-9	Methyl Bromide	ND	4.1	1.8	ug/kg	
74-87-3	Methyl Chloride	ND	4.1	1.7	ug/kg	
75-09-2	Methylene Chloride	ND	8.3	3.3	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	21	4.4	ug/kg	
100-42-5	Styrene	ND	4.1	0.83	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.1	0.92	ug/kg	
127-18-4	Tetrachloroethylene	21.3	4.1	1.3	ug/kg	
108-88-3	Toluene	ND	4.1	0.83	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	4.1	1.1	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	4.1	1.0	ug/kg	
79-01-6	Trichloroethylene	ND	4.1	0.83	ug/kg	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: DPT-59-3
Lab Sample ID: FA29657-2
Matrix: SO - Soil
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

4.2

4

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	4.1	1.3	ug/kg	
1330-20-7	Xylene (total)	ND	12	1.7	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		75-124%
17060-07-0	1,2-Dichloroethane-D4	108%		72-135%
2037-26-5	Toluene-D8	99%		75-126%
460-00-4	4-Bromofluorobenzene	102%		71-133%

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-59-10	Date Sampled:	12/02/15
Lab Sample ID:	FA29657-3	Date Received:	12/03/15
Matrix:	SO - Soil	Percent Solids:	88.5
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Y24512.D	1	12/03/15	AD	n/a	n/a	VY1033
Run #2							

	Initial Weight	Final Volume
Run #1	5.92 g	5.0 ml
Run #2		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	48	14	ug/kg	
71-43-2	Benzene	ND	4.8	0.95	ug/kg	
75-27-4	Bromodichloromethane	ND	4.8	0.95	ug/kg	
75-25-2	Bromoform	ND	4.8	0.95	ug/kg	
78-93-3	2-Butanone (MEK)	ND	24	8.1	ug/kg	
75-15-0	Carbon Disulfide	ND	4.8	1.4	ug/kg	
56-23-5	Carbon Tetrachloride	ND	4.8	0.95	ug/kg	
108-90-7	Chlorobenzene	ND	4.8	0.95	ug/kg	
75-00-3	Chloroethane	ND	4.8	1.9	ug/kg	
67-66-3	Chloroform	ND	4.8	0.95	ug/kg	
124-48-1	Dibromochloromethane	ND	4.8	0.95	ug/kg	
75-34-3	1,1-Dichloroethane	ND	4.8	0.95	ug/kg	
107-06-2	1,2-Dichloroethane	ND	4.8	0.95	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	4.8	1.3	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	4.8	0.95	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	4.8	0.95	ug/kg	
78-87-5	1,2-Dichloropropane	ND	4.8	0.95	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	4.8	0.95	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	4.8	0.95	ug/kg	
100-41-4	Ethylbenzene	ND	4.8	0.95	ug/kg	
591-78-6	2-Hexanone	ND	24	7.8	ug/kg	
74-83-9	Methyl Bromide	ND	4.8	2.1	ug/kg	
74-87-3	Methyl Chloride	ND	4.8	1.9	ug/kg	
75-09-2	Methylene Chloride	ND	9.5	3.8	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	24	5.1	ug/kg	
100-42-5	Styrene	ND	4.8	0.95	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.8	1.1	ug/kg	
127-18-4	Tetrachloroethylene	2.4	4.8	1.6	ug/kg	J
108-88-3	Toluene	ND	4.8	0.95	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	4.8	1.3	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	4.8	1.2	ug/kg	
79-01-6	Trichloroethylene	ND	4.8	0.95	ug/kg	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: DPT-59-10
Lab Sample ID: FA29657-3
Matrix: SO - Soil
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

4.3
4

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	4.8	1.5	ug/kg	
1330-20-7	Xylene (total)	ND	14	2.0	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		75-124%
17060-07-0	1,2-Dichloroethane-D4	105%		72-135%
2037-26-5	Toluene-D8	101%		75-126%
460-00-4	4-Bromofluorobenzene	103%		71-133%

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-60-1	Date Sampled:	12/02/15
Lab Sample ID:	FA29657-4	Date Received:	12/03/15
Matrix:	SO - Soil	Percent Solids:	97.1
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Y24513.D	1	12/03/15	AD	n/a	n/a	VY1033
Run #2							

	Initial Weight	Final Volume
Run #1	6.94 g	5.0 ml
Run #2		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	37	11	ug/kg	
71-43-2	Benzene	ND	3.7	0.74	ug/kg	
75-27-4	Bromodichloromethane	ND	3.7	0.74	ug/kg	
75-25-2	Bromoform	ND	3.7	0.74	ug/kg	
78-93-3	2-Butanone (MEK)	ND	19	6.3	ug/kg	
75-15-0	Carbon Disulfide	ND	3.7	1.1	ug/kg	
56-23-5	Carbon Tetrachloride	ND	3.7	0.74	ug/kg	
108-90-7	Chlorobenzene	ND	3.7	0.74	ug/kg	
75-00-3	Chloroethane	ND	3.7	1.5	ug/kg	
67-66-3	Chloroform	ND	3.7	0.74	ug/kg	
124-48-1	Dibromochloromethane	ND	3.7	0.74	ug/kg	
75-34-3	1,1-Dichloroethane	ND	3.7	0.74	ug/kg	
107-06-2	1,2-Dichloroethane	ND	3.7	0.74	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	3.7	0.98	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	3.7	0.74	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	3.7	0.74	ug/kg	
78-87-5	1,2-Dichloropropane	ND	3.7	0.74	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	3.7	0.74	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	3.7	0.74	ug/kg	
100-41-4	Ethylbenzene	ND	3.7	0.74	ug/kg	
591-78-6	2-Hexanone	ND	19	6.0	ug/kg	
74-83-9	Methyl Bromide	ND	3.7	1.6	ug/kg	
74-87-3	Methyl Chloride	ND	3.7	1.5	ug/kg	
75-09-2	Methylene Chloride	ND	7.4	3.0	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	19	4.0	ug/kg	
100-42-5	Styrene	ND	3.7	0.74	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	3.7	0.82	ug/kg	
127-18-4	Tetrachloroethylene	75.9	3.7	1.2	ug/kg	
108-88-3	Toluene	ND	3.7	0.74	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	3.7	0.97	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	3.7	0.93	ug/kg	
79-01-6	Trichloroethylene	ND	3.7	0.74	ug/kg	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: DPT-60-1
Lab Sample ID: FA29657-4
Matrix: SO - Soil
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	3.7	1.2	ug/kg	
1330-20-7	Xylene (total)	ND	11	1.5	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	102%		75-124%
17060-07-0	1,2-Dichloroethane-D4	108%		72-135%
2037-26-5	Toluene-D8	101%		75-126%
460-00-4	4-Bromofluorobenzene	105%		71-133%

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: DPT-60-8-D
Lab Sample ID: FA29657-5
Matrix: AQ - Equipment Blank
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Date Sampled: 12/02/15

Date Received: 12/03/15

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	P37485.D	1	12/03/15	KM	n/a	n/a	VP1389
Run #2							

Purge Volume
 Run #1 5.0 ml
 Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.32	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	1.2	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.29	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.50	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.27	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.25	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.28	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.22	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.33	ug/l	
108-88-3	Toluene	ND	1.0	0.40	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.26	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.31	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.22	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: DPT-60-8-D
Lab Sample ID: FA29657-5
Matrix: AQ - Equipment Blank
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	1.0	0.25	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.51	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%		83-118%
17060-07-0	1,2-Dichloroethane-D4	105%		79-125%
2037-26-5	Toluene-D8	102%		85-112%
460-00-4	4-Bromofluorobenzene	102%		83-118%

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-60-8	Date Sampled:	12/02/15
Lab Sample ID:	FA29657-6	Date Received:	12/03/15
Matrix:	SO - Soil	Percent Solids:	90.4
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	F0074289.D	1	12/03/15	EP	n/a	n/a	VF2539
Run #2							

	Initial Weight	Final Volume
Run #1	6.82 g	5.0 ml
Run #2		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	41	12	ug/kg	
71-43-2	Benzene	ND	4.1	0.81	ug/kg	
75-27-4	Bromodichloromethane	ND	4.1	0.81	ug/kg	
75-25-2	Bromoform ^a	ND	4.1	0.81	ug/kg	
78-93-3	2-Butanone (MEK)	ND	20	6.9	ug/kg	
75-15-0	Carbon Disulfide	ND	4.1	1.2	ug/kg	
56-23-5	Carbon Tetrachloride	ND	4.1	0.81	ug/kg	
108-90-7	Chlorobenzene	ND	4.1	0.81	ug/kg	
75-00-3	Chloroethane	ND	4.1	1.6	ug/kg	
67-66-3	Chloroform ^a	ND	4.1	0.81	ug/kg	
124-48-1	Dibromochloromethane ^a	ND	4.1	0.81	ug/kg	
75-34-3	1,1-Dichloroethane	ND	4.1	0.81	ug/kg	
107-06-2	1,2-Dichloroethane	ND	4.1	0.81	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	4.1	1.1	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	1.0	4.1	0.81	ug/kg	J
156-60-5	trans-1,2-Dichloroethylene	ND	4.1	0.81	ug/kg	
78-87-5	1,2-Dichloropropane	ND	4.1	0.81	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	4.1	0.81	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	4.1	0.81	ug/kg	
100-41-4	Ethylbenzene	ND	4.1	0.81	ug/kg	
591-78-6	2-Hexanone	ND	20	6.6	ug/kg	
74-83-9	Methyl Bromide	ND	4.1	1.8	ug/kg	
74-87-3	Methyl Chloride	ND	4.1	1.6	ug/kg	
75-09-2	Methylene Chloride	ND	8.1	3.2	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	20	4.3	ug/kg	
100-42-5	Styrene	ND	4.1	0.81	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.1	0.90	ug/kg	
127-18-4	Tetrachloroethylene	70.9	4.1	1.3	ug/kg	
108-88-3	Toluene	ND	4.1	0.81	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	4.1	1.1	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	4.1	1.0	ug/kg	
79-01-6	Trichloroethylene	ND	4.1	0.81	ug/kg	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-60-8	Date Sampled:	12/02/15
Lab Sample ID:	FA29657-6	Date Received:	12/03/15
Matrix:	SO - Soil	Percent Solids:	90.4
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	4.1	1.3	ug/kg	
1330-20-7	Xylene (total)	ND	12	1.7	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		75-124%
17060-07-0	1,2-Dichloroethane-D4	104%		72-135%
2037-26-5	Toluene-D8	101%		75-126%
460-00-4	4-Bromofluorobenzene	98%		71-133%

(a) Associated BS recovery outside control limits.

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-61-6	Date Sampled:	12/02/15
Lab Sample ID:	FA29657-7	Date Received:	12/03/15
Matrix:	SO - Soil	Percent Solids:	86.6
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	F0074290.D	1	12/03/15	EP	n/a	n/a	VF2539
Run #2	F0074313.D	1	12/04/15	EP	n/a	n/a	VF2540

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	6.46 g	5.0 ml	
Run #2	5.49 g	5.0 ml	100 ul

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	45	13	ug/kg	
71-43-2	Benzene	ND	4.5	0.89	ug/kg	
75-27-4	Bromodichloromethane	ND	4.5	0.89	ug/kg	
75-25-2	Bromoform ^a	ND	4.5	0.89	ug/kg	
78-93-3	2-Butanone (MEK)	ND	22	7.6	ug/kg	
75-15-0	Carbon Disulfide	ND	4.5	1.3	ug/kg	
56-23-5	Carbon Tetrachloride	ND	4.5	0.89	ug/kg	
108-90-7	Chlorobenzene	ND	4.5	0.89	ug/kg	
75-00-3	Chloroethane	ND	4.5	1.8	ug/kg	
67-66-3	Chloroform ^a	ND	4.5	0.89	ug/kg	
124-48-1	Dibromochloromethane ^a	ND	4.5	0.89	ug/kg	
75-34-3	1,1-Dichloroethane	ND	4.5	0.89	ug/kg	
107-06-2	1,2-Dichloroethane	ND	4.5	0.89	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	4.5	1.2	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	4.5	0.89	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	4.5	0.89	ug/kg	
78-87-5	1,2-Dichloropropane	ND	4.5	0.89	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	4.5	0.89	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	4.5	0.89	ug/kg	
100-41-4	Ethylbenzene	ND	4.5	0.89	ug/kg	
591-78-6	2-Hexanone	ND	22	7.3	ug/kg	
74-83-9	Methyl Bromide	ND	4.5	1.9	ug/kg	
74-87-3	Methyl Chloride	ND	4.5	1.8	ug/kg	
75-09-2	Methylene Chloride	ND	8.9	3.6	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	22	4.8	ug/kg	
100-42-5	Styrene	ND	4.5	0.89	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.5	0.99	ug/kg	
127-18-4	Tetrachloroethylene	343 ^b	300	98	ug/kg	
108-88-3	Toluene	ND	4.5	0.89	ug/kg	
71-55-6	1,1,1-Trichloroethane	1.4	4.5	1.2	ug/kg	J
79-00-5	1,1,2-Trichloroethane	ND	4.5	1.1	ug/kg	
79-01-6	Trichloroethylene	ND	4.5	0.89	ug/kg	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-61-6	Date Sampled:	12/02/15
Lab Sample ID:	FA29657-7	Date Received:	12/03/15
Matrix:	SO - Soil	Percent Solids:	86.6
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
---------	----------	--------	----	-----	-------	---

75-01-4	Vinyl Chloride	ND	4.5	1.4	ug/kg	
1330-20-7	Xylene (total)	ND	13	1.9	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
---------	----------------------	--------	--------	--------

1868-53-7	Dibromofluoromethane	101%	100%	75-124%
17060-07-0	1,2-Dichloroethane-D4	105%	105%	72-135%
2037-26-5	Toluene-D8	100%	104%	75-126%
460-00-4	4-Bromofluorobenzene	97%	95%	71-133%

(a) Associated BS recovery outside control limits.

(b) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-61-8	Date Sampled:	12/02/15
Lab Sample ID:	FA29657-8	Date Received:	12/03/15
Matrix:	SO - Soil	Percent Solids:	84.9
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	C0112433.D	1	12/04/15	EP	n/a	n/a	VC4481
Run #2	C0112438.D	1	12/04/15	EP	n/a	n/a	VC4481

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	6.41 g	5.0 ml	
Run #2	6.95 g	5.0 ml	100 ul

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	46	14	ug/kg	
71-43-2	Benzene	ND	4.6	0.92	ug/kg	
75-27-4	Bromodichloromethane	ND	4.6	0.92	ug/kg	
75-25-2	Bromoform	ND	4.6	0.92	ug/kg	
78-93-3	2-Butanone (MEK)	ND	23	7.8	ug/kg	
75-15-0	Carbon Disulfide	ND	4.6	1.4	ug/kg	
56-23-5	Carbon Tetrachloride	ND	4.6	0.92	ug/kg	
108-90-7	Chlorobenzene	ND	4.6	0.92	ug/kg	
75-00-3	Chloroethane	ND	4.6	1.8	ug/kg	
67-66-3	Chloroform	ND	4.6	0.92	ug/kg	
124-48-1	Dibromochloromethane	ND	4.6	0.92	ug/kg	
75-34-3	1,1-Dichloroethane	ND	4.6	0.92	ug/kg	
107-06-2	1,2-Dichloroethane	ND	4.6	0.92	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	4.6	1.2	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	1.4	4.6	0.92	ug/kg	J
156-60-5	trans-1,2-Dichloroethylene	ND	4.6	0.92	ug/kg	
78-87-5	1,2-Dichloropropane	ND	4.6	0.92	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	4.6	0.92	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	4.6	0.92	ug/kg	
100-41-4	Ethylbenzene	ND	4.6	0.92	ug/kg	
591-78-6	2-Hexanone	ND	23	7.5	ug/kg	
74-83-9	Methyl Bromide	ND	4.6	2.0	ug/kg	
74-87-3	Methyl Chloride	ND	4.6	1.8	ug/kg	
75-09-2	Methylene Chloride	ND	9.2	3.7	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	23	4.9	ug/kg	
100-42-5	Styrene	ND	4.6	0.92	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.6	1.0	ug/kg	
127-18-4	Tetrachloroethylene	178 ^a	260	84	ug/kg	J
108-88-3	Toluene	ND	4.6	0.92	ug/kg	
71-55-6	1,1,1-Trichloroethane	2.5	4.6	1.2	ug/kg	J
79-00-5	1,1,2-Trichloroethane	1.7	4.6	1.2	ug/kg	J
79-01-6	Trichloroethylene	1.0	4.6	0.92	ug/kg	J

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-61-8	Date Sampled:	12/02/15
Lab Sample ID:	FA29657-8	Date Received:	12/03/15
Matrix:	SO - Soil	Percent Solids:	84.9
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	4.6	1.5	ug/kg	
1330-20-7	Xylene (total)	ND	14	1.9	ug/kg	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits						
1868-53-7	Dibromofluoromethane	107%	105%	75-124%		
17060-07-0	1,2-Dichloroethane-D4	110%	105%	72-135%		
2037-26-5	Toluene-D8	96%	95%	75-126%		
460-00-4	4-Bromofluorobenzene	97%	99%	71-133%		

(a) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: DPT-61-8-A
Lab Sample ID: FA29657-9
Matrix: SO - Soil
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Date Sampled: 12/02/15

Date Received: 12/03/15

Percent Solids: 85.7

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	C0112434.D	1	12/04/15	EP	n/a	n/a	VC4481
Run #2	C0112444.D	1	12/04/15	EP	n/a	n/a	VC4481

	Initial Weight	Final Volume	Methanol Aliquot
Run #1	6.69 g	5.0 ml	
Run #2	6.88 g	5.0 ml	100 ul

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	44	13	ug/kg	
71-43-2	Benzene	ND	4.4	0.87	ug/kg	
75-27-4	Bromodichloromethane	ND	4.4	0.87	ug/kg	
75-25-2	Bromoform	ND	4.4	0.87	ug/kg	
78-93-3	2-Butanone (MEK)	ND	22	7.4	ug/kg	
75-15-0	Carbon Disulfide	ND	4.4	1.3	ug/kg	
56-23-5	Carbon Tetrachloride	ND	4.4	0.87	ug/kg	
108-90-7	Chlorobenzene	ND	4.4	0.87	ug/kg	
75-00-3	Chloroethane	ND	4.4	1.7	ug/kg	
67-66-3	Chloroform	ND	4.4	0.87	ug/kg	
124-48-1	Dibromochloromethane	ND	4.4	0.87	ug/kg	
75-34-3	1,1-Dichloroethane	ND	4.4	0.87	ug/kg	
107-06-2	1,2-Dichloroethane	ND	4.4	0.87	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	4.4	1.2	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	1.2	4.4	0.87	ug/kg	J
156-60-5	trans-1,2-Dichloroethylene	ND	4.4	0.87	ug/kg	
78-87-5	1,2-Dichloropropane	ND	4.4	0.87	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	4.4	0.87	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	4.4	0.87	ug/kg	
100-41-4	Ethylbenzene	ND	4.4	0.87	ug/kg	
591-78-6	2-Hexanone	ND	22	7.1	ug/kg	
74-83-9	Methyl Bromide	ND	4.4	1.9	ug/kg	
74-87-3	Methyl Chloride	ND	4.4	1.7	ug/kg	
75-09-2	Methylene Chloride	ND	8.7	3.5	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	22	4.7	ug/kg	
100-42-5	Styrene	ND	4.4	0.87	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.4	0.97	ug/kg	
127-18-4	Tetrachloroethylene ^a	699 ^b	250	83	ug/kg	
108-88-3	Toluene	ND	4.4	0.87	ug/kg	
71-55-6	1,1,1-Trichloroethane	1.2	4.4	1.1	ug/kg	J
79-00-5	1,1,2-Trichloroethane	1.4	4.4	1.1	ug/kg	J
79-01-6	Trichloroethylene	ND	4.4	0.87	ug/kg	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	DPT-61-8-A	Date Sampled:	12/02/15
Lab Sample ID:	FA29657-9	Date Received:	12/03/15
Matrix:	SO - Soil	Percent Solids:	85.7
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
----------------	-----------------	---------------	-----------	------------	--------------	----------

75-01-4	Vinyl Chloride	ND	4.4	1.4	ug/kg	
1330-20-7	Xylene (total)	ND	13	1.8	ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
----------------	-----------------------------	---------------	---------------	---------------

1868-53-7	Dibromofluoromethane	106%	97%	75-124%
17060-07-0	1,2-Dichloroethane-D4	110%	105%	72-135%
2037-26-5	Toluene-D8	97%	94%	75-126%
460-00-4	4-Bromofluorobenzene	99%	98%	71-133%

(a) Results from different vials are not consistent; higher results were reported.

(b) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Southeast

LABORATORIES

Misc. Forms

5

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody

Accutest Laboratories Southeast Chain of Custody

4405 Vineland Road, Suite C-15 Orlando, FL 32811
TEL. 407-425-6700 • FAX: 407-425-0707
www.accutest.com

FA29657

PAGE 1 OF 1

Client / Reporting Information		Project Information										Analytical Information		Matrix Codes				
Company Name	AT&T	Project Name	UTZ Delavan Spray Technologies Site									DW - Drinking Water						
Address	16 PATERSON BLVD 11500	Street	4331 Main Hwy									GW - Ground Water						
City	GREENVILLE	State	SC	Zip	29615	City	BAMBERG	State	SC	SW - Surface Water								
Project Contact	DARIA CULLUM daria.cullum@att.com		Project #	60314964									SO - Soll					
Phone	804-234-3000		Fax #										SL - Sludge					
Sampler(s) Name(s)/Printer	Terry Alexander / Randy Morgan		Client Purchase Order #										OL - Oil					
Accutest Sample #	Field ID / Point of Collection		COLLECTION	CONTAINER INFORMATION									LIC - Other Liquid					
(1)	DPT-S9-3-c (trip blank)		DATE	TIME	SAMPLED BY	MATRIX	TOTAL # OF BOTTLES	OTHER	None	HCl	NaOH	PN23	PCMX	NaOH/NaCl	O. WATER	NaOH	8260 Total 90 Solids	LAB USE ONLY
(2)	DPT-S9-3		12/21/15	1205	LA	SD	3											23'
(3)	DPT-S9-3-ms/1msd		12/21/15	1205	LA	SD	4		1									2-3'
(4)	DPT-S9-10		12/21/15	1230	LA	SD	8		2									9-10'
(5)	DPT-60-1		12/21/15	1530	LA	SD	4		1									0-1'
(6)	DPT-60-B-1		12/21/15	1535	LA	SD	3		3									equip blank
(7)	DPT-60-8		12/21/15	1540	LA	SD	4		1									7-8'
(8)	DPT-61-6		12/21/15	1610	LA	SD	4		1									5-6'
(9)	DPT-61-8		12/21/15	1650	LA	SD	4		1									7-8'
	DPT-61-8-a		12/21/15	1650	LA	SD	4		1									7-8'
	Tempblank		12/21/15															

TURNAROUND TIME (Business Days)

Approved By: / Rush Code

- 10 Days Standard
- 7 Day RUSH
- 5 Day RUSH
- 3 Day EMERGENCY
- 2 Day EMERGENCY
- 1 Day EMERGENCY
- OTHER

- COMMERCIAL "A" (RESULTS ONLY)
- COMMERCIAL "B" (RESULTS PLUS QC)
- REDT1 (EPA LEVEL 3)
- FULT1 (EPA LEVEL 4)
- EDD'S UTZ - per SW

Emergency or Rush T/A Data Available VIA Email or LabLink

Sample Custody must be documented below each time samples change possession, including courier delivery.

Relinquished by Sampler:	Date Time:	Received By:	Relinquished by:	Date Time:	Received By:
10/21/15 Terry Alexander	12/21/15 1730	2 FA29657-10204594734	3	12-3-15	4 J. Carol (1282) 10:00
Relinquished by:	Date Time:	Received By:	Relinquished by:	Date Time:	Received By:
5	6		7		8

Lab Use Only: Custody Seal in Place: Y N Temp Blank Provided: Y N Preserved where Applicable: Y N Total # of Coolers: Cooler Temperature (s) Celsius: 3.6

5.1

FA29657: Chain of Custody
Page 1 of 3

ACCUTEST LABORATORIES SAMPLE RECEIPT CONFIRMATION

ACCUTEST'S JOB NUMBER: FA 29687

CLIENT: AECOM

PROJECT: 60314964

DATE/TIME RECEIVED: 12-3-15 10:00

(MM/DD/YY 24:00)

NUMBER OF COOLERS RECEIVED: 1

METHOD OF DELIVERY:

FEDEX

UPS

ACCUTEST COURIER

DELIVERY

OTHER:

AIRBILL NUMBERS: 80 20 1594 7139

COOLER INFORMATION

CUSTODY SEAL NOT PRESENT OR NOT INTACT
 CHAIN OF CUSTODY NOT RECEIVED (COC)
 ANALYSIS REQUESTED IS UNCLEAR OR MISSING
 SAMPLE DATES OR TIMES UNCLEAR OR MISSING
 TEMPERATURE CRITERIA NOT MET

TRIP BLANK INFORMATION

TRIP BLANK PROVIDED
 TRIP BLANK NOT PROVIDED
 TRIP BLANK NOT ON COC
 TRIP BLANK INTACT
 TRIP BLANK NOT INTACT
 RECEIVED WATER TRIP BLANK
 RECEIVED SOIL TRIP BLANK

MISC. INFORMATION

NUMBER OF ENCORES ? 25-GRAM _____ 5-GRAM _____

NUMBER OF 5035 FIELD KITS ? 8+TB

NUMBER OF LAB FILTERED METALS ? _____

TEST STRIP LOT#s pH 0-3 204413A _____

pH 10-12 219813A _____

OTHER (specify) _____

SUMMARY OF COMMENTS: _____

 _____TEMPERATURE INFORMATION

IR THERM ID 1 CORR. FACTOR -0.1
 OBSERVED TEMPS: 4.0
 CORRECTED TEMPS: 3.6

(USED FOR LIMS)

SAMPLE INFORMATION

INCORRECT NUMBER OF CONTAINERS USED
 SAMPLE RECEIVED IMPROPERLY PRESERVED
 INSUFFICIENT VOLUME FOR ANALYSIS
 DATES/TIMES ON COC DO NOT MATCH SAMPLE LABEL
 ID'S ON COC DO NOT MATCH LABEL
 VOC VIALS HAVE HEADSPACE (MACRO BUBBLES)
 BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED
 NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED
 UNCLEAR FILTERING OR COMPOSITING INSTRUCTIONS
 SAMPLE CONTAINER(S) RECEIVED BROKEN
 5035 FIELD KITS NOT RECEIVED WITHIN 48 HOURS
 BULK VOA SOIL JARS NOT RECEIVED WITHIN 48 HOURS
 % SOLIDS JAR NOT RECEIVED
 RESIDUAL CHLORINE PRESENT LOT# _____

(APPLICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS)

TECHNICIAN SIGNATURE/DATE Je 12-3-15

REVIEWER SIGNATURE/DATE Tz 12-3-15

NF 11/15

receipt confirmation 111015.xls

FA29657: Chain of Custody

Page 2 of 3

00255

00400 FedEx Express Package US Airbill

FedEx Tracking Number 8020 4594 7139

1 From Date 12/10/12

Sender's Name Leanne Alvarado Phone 619 274 3606

Company ACCOMTECH INC.

Address 10 FEDERAL INDUSTRIAL DR. B Dept/Floor/Suite/Room

City GREENVILLE State CA ZIP 92041-4212

2 Your Internal Billing Reference

3 To Recipient's Name Sample Management Phone 619 274 6761

Company ACCOMTECH INC.

Address 4400, Mission St 515 Dept/Floor/Suite/Room

We cannot deliver to P.O. boxes or PO ZIP codes.

Address Use this line for the HOLD location address or for continuation of your shipping address.

City 10000 State CA ZIP 92041-500

HOLD Weekly FedEx location address
 FedEx First Overnight

HOLD Saturday FedEx location address
 FedEx Priority Overnight
 FedEx Standard Overnight
 FedEx Promotional
 FedEx Ground

HOLD Monday FedEx location address
 FedEx 2Day A.M.
 FedEx 2Day

HOLD Tuesday FedEx location address
 FedEx Express Saver

HOLD Wednesday FedEx location address
 FedEx 2Day A.M.
 FedEx 2Day

HOLD Thursday FedEx location address
 FedEx Express Saver

HOLD Friday FedEx location address
 FedEx 2Day A.M.
 FedEx 2Day

HOLD Saturday FedEx location address
 FedEx Express Saver

HOLD Sunday FedEx location address
 FedEx 2Day A.M.
 FedEx 2Day

HOLD Monday FedEx location address
 FedEx Express Saver

HOLD Tuesday FedEx location address
 FedEx 2Day A.M.
 FedEx 2Day

HOLD Wednesday FedEx location address
 FedEx Express Saver

HOLD Thursday FedEx location address
 FedEx 2Day A.M.
 FedEx 2Day

HOLD Friday FedEx location address
 FedEx Express Saver

HOLD Saturday FedEx location address
 FedEx 2Day A.M.
 FedEx 2Day

HOLD Sunday FedEx location address
 FedEx Express Saver

4 Express Package Service * To most locations.
 NOTE: Service order has changed. Please select carefully.

Packages up to 150 lbs.
 For packages over 150 lbs. see the
 FedEx Express Freight GS Sheet.

Next Business Day

FedEx First Overnight
 FedEx Priority Overnight
 FedEx Standard Overnight

2 or 3 Business Days

FedEx 2Day A.M.
 FedEx 2Day

5 Packaging Declared value limit \$200.

FedEx Envelope* FedEx Pak* FedEx Box FedEx Tube Other

6 Special Handling and Delivery Signature Options

SATURDAY Delivery NOT available for FedEx Standard Overnight, FedEx 2Day A.M., or FedEx Express Saver.

No Signature Required Direct Signature
 Package may be left without delivery. Someone at recipient's address may sign for delivery. Not applicable.

Indirect Signature
 If no one is available at recipient's address, someone at an adjacent address may sign for delivery. For residential delivery only. Not applicable.

Does this shipment contain dangerous goods?

No Yes Yes Yes
 Not classified Yes Yes Yes
 Shipper's Declaration not required Shipper's Declaration not required

UNIV12113
 MADE IN USA

7 Payment Billing Enter FedEx Acct. No. or Credit Card No. below. Ocean Freight Air Freight
 Sender Acct. No. in Section Recipient Third Party Credit Card Cash/Check
 Total Weight Credit Card Auth. For
 My Way or Less USD000 unless you declare a higher value. See the current FedEx Service Guide for details.

8020 4594 7139

5.1

FA29657: Chain of Custody
 Page 3 of 3

Southeast

LABORATORIES

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1389-MB	P37465.D	1	12/03/15	KM	n/a	n/a	VP1389

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-5

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.32	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	1.2	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.29	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.50	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.27	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.25	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.28	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.22	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.33	ug/l	
108-88-3	Toluene	ND	1.0	0.40	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.26	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.31	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.22	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.25	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.51	ug/l	

Method Blank Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1389-MB	P37465.D	1	12/03/15	KM	n/a	n/a	VP1389

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-5

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	98%	83-118%
17060-07-0	1,2-Dichloroethane-D4	103%	79-125%
2037-26-5	Toluene-D8	102%	85-112%
460-00-4	4-Bromofluorobenzene	103%	83-118%

Method Blank Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VY1033-MB	Y24493.D	1	12/03/15	AD	n/a	n/a	VY1033

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-1, FA29657-2, FA29657-3, FA29657-4

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	15	ug/kg	
71-43-2	Benzene	ND	5.0	1.0	ug/kg	
75-27-4	Bromodichloromethane	ND	5.0	1.0	ug/kg	
75-25-2	Bromoform	ND	5.0	1.0	ug/kg	
78-93-3	2-Butanone (MEK)	ND	25	8.5	ug/kg	
75-15-0	Carbon Disulfide	ND	5.0	1.5	ug/kg	
56-23-5	Carbon Tetrachloride	ND	5.0	1.0	ug/kg	
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/kg	
75-00-3	Chloroethane	ND	5.0	2.0	ug/kg	
67-66-3	Chloroform	ND	5.0	1.0	ug/kg	
124-48-1	Dibromochloromethane	ND	5.0	1.0	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.0	1.0	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	5.0	1.3	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.0	1.0	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
100-41-4	Ethylbenzene	ND	5.0	1.0	ug/kg	
591-78-6	2-Hexanone	ND	25	8.2	ug/kg	
74-83-9	Methyl Bromide	ND	5.0	2.2	ug/kg	
74-87-3	Methyl Chloride	ND	5.0	2.0	ug/kg	
75-09-2	Methylene Chloride	ND	10	4.0	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	5.4	ug/kg	
100-42-5	Styrene	ND	5.0	1.0	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.0	1.6	ug/kg	
108-88-3	Toluene	ND	5.0	1.0	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.3	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.3	ug/kg	
79-01-6	Trichloroethylene	ND	5.0	1.0	ug/kg	
75-01-4	Vinyl Chloride	ND	5.0	1.6	ug/kg	
1330-20-7	Xylene (total)	ND	15	2.1	ug/kg	

Method Blank Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VY1033-MB	Y24493.D	1	12/03/15	AD	n/a	n/a	VY1033

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-1, FA29657-2, FA29657-3, FA29657-4

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	103%	75-124%
17060-07-0	1,2-Dichloroethane-D4	99%	72-135%
2037-26-5	Toluene-D8	104%	75-126%
460-00-4	4-Bromofluorobenzene	101%	71-133%

Method Blank Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF2539-MB	F0074276.D	1	12/03/15	EP	n/a	n/a	VF2539

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-6, FA29657-7

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	15	ug/kg	
71-43-2	Benzene	ND	5.0	1.0	ug/kg	
75-27-4	Bromodichloromethane	ND	5.0	1.0	ug/kg	
75-25-2	Bromoform	ND	5.0	1.0	ug/kg	
78-93-3	2-Butanone (MEK)	ND	25	8.5	ug/kg	
75-15-0	Carbon Disulfide	ND	5.0	1.5	ug/kg	
56-23-5	Carbon Tetrachloride	ND	5.0	1.0	ug/kg	
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/kg	
75-00-3	Chloroethane	ND	5.0	2.0	ug/kg	
67-66-3	Chloroform	ND	5.0	1.0	ug/kg	
124-48-1	Dibromochloromethane	ND	5.0	1.0	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.0	1.0	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	5.0	1.3	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.0	1.0	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
100-41-4	Ethylbenzene	ND	5.0	1.0	ug/kg	
591-78-6	2-Hexanone	ND	25	8.2	ug/kg	
74-83-9	Methyl Bromide	ND	5.0	2.2	ug/kg	
74-87-3	Methyl Chloride	ND	5.0	2.0	ug/kg	
75-09-2	Methylene Chloride	ND	10	4.0	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	5.4	ug/kg	
100-42-5	Styrene	ND	5.0	1.0	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.0	1.6	ug/kg	
108-88-3	Toluene	ND	5.0	1.0	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.3	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.3	ug/kg	
79-01-6	Trichloroethylene	ND	5.0	1.0	ug/kg	
75-01-4	Vinyl Chloride	ND	5.0	1.6	ug/kg	
1330-20-7	Xylene (total)	ND	15	2.1	ug/kg	

Method Blank Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF2539-MB	F0074276.D	1	12/03/15	EP	n/a	n/a	VF2539

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-6, FA29657-7

CAS No.	Surrogate Recoveries	Limits
1868-53-7	Dibromofluoromethane	100% 75-124%
17060-07-0	1,2-Dichloroethane-D4	103% 72-135%
2037-26-5	Toluene-D8	103% 75-126%
460-00-4	4-Bromofluorobenzene	95% 71-133%

CAS No.	Surrogate Recoveries	Limits
1868-53-7	Dibromofluoromethane	100% 75-124%
17060-07-0	1,2-Dichloroethane-D4	103% 72-135%
2037-26-5	Toluene-D8	103% 75-126%
460-00-4	4-Bromofluorobenzene	95% 71-133%

Method Blank Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VC4481-MB	C0112432.D	1	12/04/15	EP	n/a	n/a	VC4481

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-8, FA29657-9

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	15	ug/kg	
71-43-2	Benzene	ND	5.0	1.0	ug/kg	
75-27-4	Bromodichloromethane	ND	5.0	1.0	ug/kg	
75-25-2	Bromoform	ND	5.0	1.0	ug/kg	
78-93-3	2-Butanone (MEK)	ND	25	8.5	ug/kg	
75-15-0	Carbon Disulfide	ND	5.0	1.5	ug/kg	
56-23-5	Carbon Tetrachloride	ND	5.0	1.0	ug/kg	
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/kg	
75-00-3	Chloroethane	ND	5.0	2.0	ug/kg	
67-66-3	Chloroform	ND	5.0	1.0	ug/kg	
124-48-1	Dibromochloromethane	ND	5.0	1.0	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.0	1.0	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	5.0	1.3	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.0	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.0	1.0	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.0	ug/kg	
100-41-4	Ethylbenzene	ND	5.0	1.0	ug/kg	
591-78-6	2-Hexanone	ND	25	8.2	ug/kg	
74-83-9	Methyl Bromide	ND	5.0	2.2	ug/kg	
74-87-3	Methyl Chloride	ND	5.0	2.0	ug/kg	
75-09-2	Methylene Chloride	ND	10	4.0	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	5.4	ug/kg	
100-42-5	Styrene	ND	5.0	1.0	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.0	1.6	ug/kg	
108-88-3	Toluene	ND	5.0	1.0	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.3	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.3	ug/kg	
79-01-6	Trichloroethylene	ND	5.0	1.0	ug/kg	
75-01-4	Vinyl Chloride	ND	5.0	1.6	ug/kg	
1330-20-7	Xylene (total)	ND	15	2.1	ug/kg	

Method Blank Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VC4481-MB	C0112432.D	1	12/04/15	EP	n/a	n/a	VC4481

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-8, FA29657-9

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	102%	75-124%
17060-07-0	1,2-Dichloroethane-D4	107%	72-135%
2037-26-5	Toluene-D8	96%	75-126%
460-00-4	4-Bromofluorobenzene	96%	71-133%

Method Blank Summary

Page 1 of 1

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF2540-MB	F0074302.D	1	12/04/15	EP	n/a	n/a	VF2540

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-7

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethylene	ND	5.0	1.6	ug/kg	

CAS No. Surrogate Recoveries

CAS No.	Surrogate	Recoveries	Limits
1868-53-7	Dibromofluoromethane	102%	75-124%
17060-07-0	1,2-Dichloroethane-D4	104%	72-135%
2037-26-5	Toluene-D8	103%	75-126%
460-00-4	4-Bromofluorobenzene	95%	71-133%

Blank Spike Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1389-BS	P37464.D	1	12/03/15	KM	n/a	n/a	VP1389

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	104	83	50-147
71-43-2	Benzene	25	24.8	99	81-122
75-27-4	Bromodichloromethane	25	24.5	98	79-123
75-25-2	Bromoform	25	22.0	88	66-123
78-93-3	2-Butanone (MEK)	125	103	82	56-143
75-15-0	Carbon Disulfide	25	25.6	102	66-148
56-23-5	Carbon Tetrachloride	25	25.2	101	76-136
108-90-7	Chlorobenzene	25	23.3	93	82-124
75-00-3	Chloroethane	25	27.4	110	62-144
67-66-3	Chloroform	25	24.6	98	80-124
124-48-1	Dibromochloromethane	25	22.3	89	78-122
75-34-3	1,1-Dichloroethane	25	25.4	102	81-122
107-06-2	1,2-Dichloroethane	25	23.7	95	75-125
75-35-4	1,1-Dichloroethylene	25	24.8	99	78-137
156-59-2	cis-1,2-Dichloroethylene	25	22.9	92	78-120
156-60-5	trans-1,2-Dichloroethylene	25	26.0	104	76-127
78-87-5	1,2-Dichloropropane	25	23.7	95	76-124
10061-01-5	cis-1,3-Dichloropropene	25	24.0	96	75-118
10061-02-6	trans-1,3-Dichloropropene	25	25.3	101	80-120
100-41-4	Ethylbenzene	25	24.8	99	81-121
591-78-6	2-Hexanone	125	98.3	79	61-129
74-83-9	Methyl Bromide	25	28.8	115	59-143
74-87-3	Methyl Chloride	25	24.1	96	50-159
75-09-2	Methylene Chloride	25	23.4	94	69-135
108-10-1	4-Methyl-2-pentanone (MIBK)	125	105	84	66-122
100-42-5	Styrene	25	23.6	94	78-119
79-34-5	1,1,2,2-Tetrachloroethane	25	22.0	88	72-120
127-18-4	Tetrachloroethylene	25	26.4	106	76-135
108-88-3	Toluene	25	24.5	98	80-120
71-55-6	1,1,1-Trichloroethane	25	24.8	99	75-130
79-00-5	1,1,2-Trichloroethane	25	23.5	94	76-119
79-01-6	Trichloroethylene	25	24.0	96	81-126
75-01-4	Vinyl Chloride	25	26.6	106	69-159
1330-20-7	Xylene (total)	75	74.8	100	80-126

* = Outside of Control Limits.

6.2.1
6

Blank Spike Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1389-BS	P37464.D	1	12/03/15	KM	n/a	n/a	VP1389

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-5

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	98%	83-118%
17060-07-0	1,2-Dichloroethane-D4	103%	79-125%
2037-26-5	Toluene-D8	100%	85-112%
460-00-4	4-Bromofluorobenzene	96%	83-118%

* = Outside of Control Limits.

Blank Spike Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VY1033-BS	Y24492.D	1	12/03/15	AD	n/a	n/a	VY1033

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-1, FA29657-2, FA29657-3, FA29657-4

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
67-64-1	Acetone	250	261	104	61-152
71-43-2	Benzene	50	56.1	112	76-126
75-27-4	Bromodichloromethane	50	54.9	110	74-130
75-25-2	Bromoform	50	59.4	119	76-127
78-93-3	2-Butanone (MEK)	250	259	104	75-137
75-15-0	Carbon Disulfide	50	47.1	94	72-122
56-23-5	Carbon Tetrachloride	50	55.4	111	78-133
108-90-7	Chlorobenzene	50	57.2	114	81-129
75-00-3	Chloroethane	50	50.2	100	68-133
67-66-3	Chloroform	50	54.5	109	72-123
124-48-1	Dibromochloromethane	50	56.3	113	76-127
75-34-3	1,1-Dichloroethane	50	55.3	111	73-125
107-06-2	1,2-Dichloroethane	50	53.2	106	74-128
75-35-4	1,1-Dichloroethylene	50	52.1	104	81-136
156-59-2	cis-1,2-Dichloroethylene	50	53.1	106	74-126
156-60-5	trans-1,2-Dichloroethylene	50	57.5	115	70-127
78-87-5	1,2-Dichloropropane	50	51.0	102	74-125
10061-01-5	cis-1,3-Dichloropropene	50	55.9	112	80-123
10061-02-6	trans-1,3-Dichloropropene	50	60.1	120	75-131
100-41-4	Ethylbenzene	50	57.4	115	77-123
591-78-6	2-Hexanone	250	285	114	72-133
74-83-9	Methyl Bromide	50	57.3	115	65-139
74-87-3	Methyl Chloride	50	54.3	109	71-144
75-09-2	Methylene Chloride	50	53.1	106	74-137
108-10-1	4-Methyl-2-pentanone (MIBK)	250	254	102	76-132
100-42-5	Styrene	50	55.1	110	78-125
79-34-5	1,1,2,2-Tetrachloroethane	50	52.7	105	71-126
127-18-4	Tetrachloroethylene	50	58.7	117	79-130
108-88-3	Toluene	50	56.3	113	76-124
71-55-6	1,1,1-Trichloroethane	50	52.6	105	70-129
79-00-5	1,1,2-Trichloroethane	50	53.9	108	74-124
79-01-6	Trichloroethylene	50	54.9	110	75-128
75-01-4	Vinyl Chloride	50	56.8	114	76-141
1330-20-7	Xylene (total)	150	174	116	80-129

* = Outside of Control Limits.

Blank Spike Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VY1033-BS	Y24492.D	1	12/03/15	AD	n/a	n/a	VY1033

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-1, FA29657-2, FA29657-3, FA29657-4

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	98%	75-124%
17060-07-0	1,2-Dichloroethane-D4	92%	72-135%
2037-26-5	Toluene-D8	98%	75-126%
460-00-4	4-Bromofluorobenzene	95%	71-133%

* = Outside of Control Limits.

Blank Spike Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF2539-BS	F0074275.D	1	12/03/15	EP	n/a	n/a	VF2539

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-6, FA29657-7

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
67-64-1	Acetone	250	311	124	61-152
71-43-2	Benzene	50	52.7	105	76-126
75-27-4	Bromodichloromethane	50	58.4	117	74-130
75-25-2	Bromoform	50	72.4	145*	76-127
78-93-3	2-Butanone (MEK)	250	295	118	75-137
75-15-0	Carbon Disulfide	50	54.4	109	72-122
56-23-5	Carbon Tetrachloride	50	59.1	118	78-133
108-90-7	Chlorobenzene	50	53.2	106	81-129
75-00-3	Chloroethane	50	64.9	130	68-133
67-66-3	Chloroform	50	61.8	124*	72-123
124-48-1	Dibromochloromethane	50	64.0	128*	76-127
75-34-3	1,1-Dichloroethane	50	62.4	125	73-125
107-06-2	1,2-Dichloroethane	50	52.8	106	74-128
75-35-4	1,1-Dichloroethylene	50	58.5	117	81-136
156-59-2	cis-1,2-Dichloroethylene	50	56.9	114	74-126
156-60-5	trans-1,2-Dichloroethylene	50	62.4	125	70-127
78-87-5	1,2-Dichloropropane	50	53.4	107	74-125
10061-01-5	cis-1,3-Dichloropropene	50	56.8	114	80-123
10061-02-6	trans-1,3-Dichloropropene	50	60.4	121	75-131
100-41-4	Ethylbenzene	50	52.2	104	77-123
591-78-6	2-Hexanone	250	268	107	72-133
74-83-9	Methyl Bromide	50	62.2	124	65-139
74-87-3	Methyl Chloride	50	64.0	128	71-144
75-09-2	Methylene Chloride	50	62.6	125	74-137
108-10-1	4-Methyl-2-pentanone (MIBK)	250	278	111	76-132
100-42-5	Styrene	50	50.3	101	78-125
79-34-5	1,1,2,2-Tetrachloroethane	50	59.9	120	71-126
127-18-4	Tetrachloroethylene	50	46.1	92	79-130
108-88-3	Toluene	50	51.2	102	76-124
71-55-6	1,1,1-Trichloroethane	50	52.2	104	70-129
79-00-5	1,1,2-Trichloroethane	50	56.7	113	74-124
79-01-6	Trichloroethylene	50	49.8	100	75-128
75-01-4	Vinyl Chloride	50	62.3	125	76-141
1330-20-7	Xylene (total)	150	150	100	80-129

* = Outside of Control Limits.

Blank Spike Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF2539-BS	F0074275.D	1	12/03/15	EP	n/a	n/a	VF2539

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-6, FA29657-7

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	111%	75-124%
17060-07-0	1,2-Dichloroethane-D4	103%	72-135%
2037-26-5	Toluene-D8	99%	75-126%
460-00-4	4-Bromofluorobenzene	91%	71-133%

* = Outside of Control Limits.

Blank Spike Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VC4481-BS	C0112431.D	1	12/04/15	EP	n/a	n/a	VC4481

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-8, FA29657-9

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
67-64-1	Acetone	250	268	107	61-152
71-43-2	Benzene	50	52.2	104	76-126
75-27-4	Bromodichloromethane	50	52.3	105	74-130
75-25-2	Bromoform	50	55.1	110	76-127
78-93-3	2-Butanone (MEK)	250	246	98	75-137
75-15-0	Carbon Disulfide	50	50.1	100	72-122
56-23-5	Carbon Tetrachloride	50	53.9	108	78-133
108-90-7	Chlorobenzene	50	53.8	108	81-129
75-00-3	Chloroethane	50	58.4	117	68-133
67-66-3	Chloroform	50	58.1	116	72-123
124-48-1	Dibromochloromethane	50	57.6	115	76-127
75-34-3	1,1-Dichloroethane	50	53.4	107	73-125
107-06-2	1,2-Dichloroethane	50	50.7	101	74-128
75-35-4	1,1-Dichloroethylene	50	54.0	108	81-136
156-59-2	cis-1,2-Dichloroethylene	50	54.6	109	74-126
156-60-5	trans-1,2-Dichloroethylene	50	54.7	109	70-127
78-87-5	1,2-Dichloropropane	50	52.1	104	74-125
10061-01-5	cis-1,3-Dichloropropene	50	54.4	109	80-123
10061-02-6	trans-1,3-Dichloropropene	50	58.1	116	75-131
100-41-4	Ethylbenzene	50	54.0	108	77-123
591-78-6	2-Hexanone	250	268	107	72-133
74-83-9	Methyl Bromide	50	57.2	114	65-139
74-87-3	Methyl Chloride	50	50.4	101	71-144
75-09-2	Methylene Chloride	50	55.6	111	74-137
108-10-1	4-Methyl-2-pentanone (MIBK)	250	256	102	76-132
100-42-5	Styrene	50	56.2	112	78-125
79-34-5	1,1,2,2-Tetrachloroethane	50	53.5	107	71-126
127-18-4	Tetrachloroethylene	50	52.2	104	79-130
108-88-3	Toluene	50	54.0	108	76-124
71-55-6	1,1,1-Trichloroethane	50	51.8	104	70-129
79-00-5	1,1,2-Trichloroethane	50	53.9	108	74-124
79-01-6	Trichloroethylene	50	52.0	104	75-128
75-01-4	Vinyl Chloride	50	53.8	108	76-141
1330-20-7	Xylene (total)	150	160	107	80-129

* = Outside of Control Limits.

Blank Spike Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VC4481-BS	C0112431.D	1	12/04/15	EP	n/a	n/a	VC4481

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-8, FA29657-9

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	96%	75-124%
17060-07-0	1,2-Dichloroethane-D4	95%	72-135%
2037-26-5	Toluene-D8	100%	75-126%
460-00-4	4-Bromofluorobenzene	102%	71-133%

* = Outside of Control Limits.

Blank Spike Summary

Page 1 of 1

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF2540-BS	F0074301.D	1	12/04/15	EP	n/a	n/a	VF2540

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-7

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
127-18-4	Tetrachloroethylene	50	47.1	94	79-130

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	102%	75-124%
17060-07-0	1,2-Dichloroethane-D4	101%	72-135%
2037-26-5	Toluene-D8	98%	75-126%
460-00-4	4-Bromofluorobenzene	91%	71-133%

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29644-7MS	F0074287.D	1	12/03/15	EP	n/a	n/a	VF2539
FA29644-7MSD	F0074288.D	1	12/03/15	EP	n/a	n/a	VF2539
FA29644-7	F0074277.D	1	12/03/15	EP	n/a	n/a	VF2539

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-6, FA29657-7

CAS No.	Compound	FA29644-7		Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
		ug/kg	Q								
67-64-1	Acetone	46 U	367	382	104	397	348	88	9	61-152/27	
71-43-2	Benzene	4.6 U	73.5	69.9	95	79.3	76.0	96	8	76-126/26	
75-27-4	Bromodichloromethane	4.6 U	73.5	78.9	107	79.3	84.5	107	7	74-130/25	
75-25-2	Bromoform	4.6 U	73.5	90.0	123	79.3	97.4	123	8	76-127/26	
78-93-3	2-Butanone (MEK)	23 U	367	328	89	397	353	89	7	75-137/25	
75-15-0	Carbon Disulfide	4.6 U	73.5	75.7	103	79.3	71.7	90	5	72-122/29	
56-23-5	Carbon Tetrachloride	4.6 U	73.5	70.9	97	79.3	74.7	94	5	78-133/29	
108-90-7	Chlorobenzene	4.6 U	73.5	69.0	94	79.3	76.2	96	10	81-129/29	
75-00-3	Chloroethane	4.6 U	73.5	83.6	114	79.3	77.1	97	8	68-133/29	
67-66-3	Chloroform	4.6 U	73.5	70.2	96	79.3	75.1	95	7	72-123/26	
124-48-1	Dibromochloromethane	4.6 U	73.5	82.9	113	79.3	91.5	115	10	76-127/27	
75-34-3	1,1-Dichloroethane	4.6 U	73.5	70.7	96	79.3	73.9	93	4	73-125/27	
107-06-2	1,2-Dichloroethane	4.6 U	73.5	72.8	99	79.3	72.4	91	1	74-128/23	
75-35-4	1,1-Dichloroethylene	4.6 U	73.5	74.4	101	79.3	69.7	88	7	81-136/28	
156-59-2	cis-1,2-Dichloroethylene	4.6 U	73.5	63.6	87	79.3	72.6	92	13	74-126/26	
156-60-5	trans-1,2-Dichloroethylene	4.6 U	73.5	78.1	106	79.3	74.5	94	5	70-127/27	
78-87-5	1,2-Dichloropropane	4.6 U	73.5	70.0	95	79.3	78.8	99	12	74-125/25	
10061-01-5	cis-1,3-Dichloropropene	4.6 U	73.5	74.3	101	79.3	78.7	99	6	80-123/26	
10061-02-6	trans-1,3-Dichloropropene	4.6 U	73.5	78.0	106	79.3	88.4	111	13	75-131/28	
100-41-4	Ethylbenzene	4.6 U	73.5	70.2	96	79.3	77.2	97	9	77-123/31	
591-78-6	2-Hexanone	23 U	367	337	92	397	370	93	9	72-133/26	
74-83-9	Methyl Bromide	4.6 U	73.5	88.0	120	79.3	78.2	99	12	65-139/31	
74-87-3	Methyl Chloride	4.6 U	73.5	80.1	109	79.3	74.0	93	8	71-144/27	
75-09-2	Methylene Chloride	9.2 U	73.5	81.5	111	79.3	75.5	95	8	74-137/28	
108-10-1	4-Methyl-2-pentanone (MIBK)	23 U	367	357	97	397	422	106	17	76-132/26	
100-42-5	Styrene	4.6 U	73.5	65.0	88	79.3	72.9	92	11	78-125/30	
79-34-5	1,1,2,2-Tetrachloroethane	4.6 U	73.5	83.0	113	79.3	85.5	108	3	71-126/30	
127-18-4	Tetrachloroethylene	4.6 U	73.5	62.5	85	79.3	77.4	98	21	79-130/31	
108-88-3	Toluene	4.6 U	73.5	70.2	96	79.3	87.9	111	22	76-124/30	
71-55-6	1,1,1-Trichloroethane	4.6 U	73.5	67.7	92	79.3	70.5	89	4	70-129/27	
79-00-5	1,1,2-Trichloroethane	4.6 U	73.5	74.4	101	79.3	83.3	105	11	74-124/28	
79-01-6	Trichloroethylene	4.6 U	73.5	67.3	92	79.3	72.2	91	7	75-128/27	
75-01-4	Vinyl Chloride	4.6 U	73.5	78.6	107	79.3	73.3	92	7	76-141/27	
1330-20-7	Xylene (total)	14 U	220	205	93	238	223	94	8	80-129/30	

* = Outside of Control Limits.

6.3.1
6

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29644-7MS	F0074287.D	1	12/03/15	EP	n/a	n/a	VF2539
FA29644-7MSD	F0074288.D	1	12/03/15	EP	n/a	n/a	VF2539
FA29644-7	F0074277.D	1	12/03/15	EP	n/a	n/a	VF2539

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-6, FA29657-7

CAS No.	Surrogate Recoveries	MS	MSD	FA29644-7	Limits
1868-53-7	Dibromofluoromethane	98%	98%	101%	75-124%
17060-07-0	1,2-Dichloroethane-D4	102%	100%	105%	72-135%
2037-26-5	Toluene-D8	100%	117%	110%	75-126%
460-00-4	4-Bromofluorobenzene	100%	94%	127%	71-133%

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29420-7MS	P37486.D	5	12/03/15	KM	n/a	n/a	VP1389
FA29420-7MSD	P37487.D	5	12/03/15	KM	n/a	n/a	VP1389
FA29420-7	P37471.D	5	12/03/15	KM	n/a	n/a	VP1389

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-5

CAS No.	Compound	FA29420-7		Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		ug/l	Q								
67-64-1	Acetone	130	U	625	619	99	625	617	99	0	50-147/21
71-43-2	Benzene	5.0	U	125	122	98	125	118	94	3	81-122/14
75-27-4	Bromodichloromethane	5.0	U	125	114	91	125	105	84	8	79-123/19
75-25-2	Bromoform	5.0	U	125	80.2	64* a	125	79.1	63* a	1	66-123/21
78-93-3	2-Butanone (MEK)	25	U	625	614	98	625	614	98	0	56-143/18
75-15-0	Carbon Disulfide	10	U	125	111	89	125	101	81	9	66-148/23
56-23-5	Carbon Tetrachloride	5.0	U	125	125	100	125	107	86	16	76-136/23
108-90-7	Chlorobenzene	192		125	279	70* a	125	272	64* a	3	82-124/14
75-00-3	Chloroethane	10	U	125	154	123	125	149	119	3	62-144/20
67-66-3	Chloroform	5.0	U	125	121	97	125	115	92	5	80-124/15
124-48-1	Dibromochloromethane	5.0	U	125	95.9	77* a	125	90.5	72* a	6	78-122/19
75-34-3	1,1-Dichloroethane	10.1		125	130	96	125	125	92	4	81-122/15
107-06-2	1,2-Dichloroethane	5.0	U	125	118	94	125	114	91	3	75-125/14
75-35-4	1,1-Dichloroethylene	5.0	U	125	123	98	125	125	100	2	78-137/18
156-59-2	cis-1,2-Dichloroethylene	1.1	J	125	111	88	125	107	85	4	78-120/15
156-60-5	trans-1,2-Dichloroethylene	5.0	U	125	123	98	125	118	94	4	76-127/17
78-87-5	1,2-Dichloropropane	5.0	U	125	116	93	125	113	90	3	76-124/14
10061-01-5	cis-1,3-Dichloropropene	5.0	U	125	105	84	125	87.7	70* a	18	75-118/23
10061-02-6	trans-1,3-Dichloropropene	5.0	U	125	108	86	125	90.1	72* a	18	80-120/22
100-41-4	Ethylbenzene	5.0	U	125	121	97	125	118	94	3	81-121/14
591-78-6	2-Hexanone	50	U	625	574	92	625	596	95	4	61-129/18
74-83-9	Methyl Bromide	10	U	125	161	129	125	155	124	4	59-143/19
74-87-3	Methyl Chloride	10	U	125	123	98	125	125	100	2	50-159/19
75-09-2	Methylene Chloride	25	U	125	113	90	125	112	90	1	69-135/16
108-10-1	4-Methyl-2-pentanone (MIBK)	25	U	625	621	99	625	635	102	2	66-122/16
100-42-5	Styrene	5.0	U	125	104	83	125	99.3	79	5	78-119/23
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U	125	103	82	125	106	85	3	72-120/14
127-18-4	Tetrachloroethylene	5.0	U	125	125	100	125	120	96	4	76-135/16
108-88-3	Toluene	5.0	U	125	118	94	125	113	90	4	80-120/14
71-55-6	1,1,1-Trichloroethane	5.0	U	125	118	94	125	114	91	3	75-130/16
79-00-5	1,1,2-Trichloroethane	5.0	U	125	111	89	125	113	90	2	76-119/14
79-01-6	Trichloroethylene	5.0	U	125	119	95	125	111	89	7	81-126/15
75-01-4	Vinyl Chloride	1.5	J	125	137	108	125	135	107	1	69-159/18
1330-20-7	Xylene (total)	15	U	375	359	96	375	347	93	3	80-126/15

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29420-7MS	P37486.D	5	12/03/15	KM	n/a	n/a	VP1389
FA29420-7MSD	P37487.D	5	12/03/15	KM	n/a	n/a	VP1389
FA29420-7	P37471.D	5	12/03/15	KM	n/a	n/a	VP1389

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-5

CAS No.	Surrogate Recoveries	MS	MSD	FA29420-7	Limits
1868-53-7	Dibromofluoromethane	100%	98%	97%	83-118%
17060-07-0	1,2-Dichloroethane-D4	103%	104%	105%	79-125%
2037-26-5	Toluene-D8	98%	99%	101%	85-112%
460-00-4	4-Bromofluorobenzene	93%	94%	99%	83-118%

(a) Outside control limits.

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29657-2MS	Y24510.D	1	12/03/15	AD	n/a	n/a	VY1033
FA29657-2MSD	Y24511.D	1	12/03/15	AD	n/a	n/a	VY1033
FA29657-2	Y24509.D	1	12/03/15	AD	n/a	n/a	VY1033

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-1, FA29657-2, FA29657-3, FA29657-4

CAS No.	Compound	FA29657-2		Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
		ug/kg	Q								
67-64-1	Acetone	19.0	J	205	168	73	207	179	77	6	61-152/27
71-43-2	Benzene	ND		40.9	32.0	78	41.5	35.5	86	10	76-126/26
75-27-4	Bromodichloromethane	ND		40.9	30.6	75	41.5	33.7	81	10	74-130/25
75-25-2	Bromoform	ND		40.9	30.8	75*	41.5	33.6	81	9	76-127/26
78-93-3	2-Butanone (MEK)	ND		205	160	78	207	160	77	0	75-137/25
75-15-0	Carbon Disulfide	ND		40.9	28.1	69*	41.5	30.5	74	8	72-122/29
56-23-5	Carbon Tetrachloride	ND		40.9	29.4	72*	41.5	33.2	80	12	78-133/29
108-90-7	Chlorobenzene	ND		40.9	31.0	76*	41.5	35.0	84	12	81-129/29
75-00-3	Chloroethane	ND		40.9	24.2	59*	41.5	27.0	65*	11	68-133/29
67-66-3	Chloroform	ND		40.9	30.2	74	41.5	33.4	81	10	72-123/26
124-48-1	Dibromochloromethane	ND		40.9	30.5	75*	41.5	34.1	82	11	76-127/27
75-34-3	1,1-Dichloroethane	ND		40.9	30.0	73	41.5	33.5	81	11	73-125/27
107-06-2	1,2-Dichloroethane	ND		40.9	31.1	76	41.5	32.8	79	5	74-128/23
75-35-4	1,1-Dichloroethylene	ND		40.9	28.2	69*	41.5	31.2	75*	10	81-136/28
156-59-2	cis-1,2-Dichloroethylene	ND		40.9	30.0	73*	41.5	33.4	81	11	74-126/26
156-60-5	trans-1,2-Dichloroethylene	ND		40.9	30.3	74	41.5	34.2	82	12	70-127/27
78-87-5	1,2-Dichloropropane	ND		40.9	29.6	72*	41.5	32.7	79	10	74-125/25
10061-01-5	cis-1,3-Dichloropropene	ND		40.9	31.1	76*	41.5	34.4	83	10	80-123/26
10061-02-6	trans-1,3-Dichloropropene	ND		40.9	29.9	73*	41.5	33.9	82	13	75-131/28
100-41-4	Ethylbenzene	ND		40.9	29.8	73*	41.5	34.3	83	14	77-123/31
591-78-6	2-Hexanone	ND		205	161	79	207	170	82	5	72-133/26
74-83-9	Methyl Bromide	ND		40.9	30.6	75	41.5	32.1	77	5	65-139/31
74-87-3	Methyl Chloride	ND		40.9	28.9	71	41.5	32.0	77	10	71-144/27
75-09-2	Methylene Chloride	ND		40.9	28.9	71*	41.5	32.4	78	11	74-137/28
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		205	140	68*	207	150	72*	7	76-132/26
100-42-5	Styrene	ND		40.9	28.1	69*	41.5	32.1	77*	13	78-125/30
79-34-5	1,1,2,2-Tetrachloroethane	ND		40.9	28.5	70*	41.5	30.6	74	7	71-126/30
127-18-4	Tetrachloroethylene	21.3		40.9	45.4	59*	41.5	68.0	113	40*	79-130/31
108-88-3	Toluene	ND		40.9	29.3	72*	41.5	34.1	82	15	76-124/30
71-55-6	1,1,1-Trichloroethane	ND		40.9	29.5	72	41.5	32.8	79	11	70-129/27
79-00-5	1,1,2-Trichloroethane	ND		40.9	29.9	73*	41.5	33.6	81	12	74-124/28
79-01-6	Trichloroethylene	ND		40.9	30.5	75	41.5	34.1	82	11	75-128/27
75-01-4	Vinyl Chloride	ND		40.9	29.3	72*	41.5	32.3	78	10	76-141/27
1330-20-7	Xylene (total)	ND		123	91.8	75*	124	107	86	15	80-129/30

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29657-2MS	Y24510.D	1	12/03/15	AD	n/a	n/a	VY1033
FA29657-2MSD	Y24511.D	1	12/03/15	AD	n/a	n/a	VY1033
FA29657-2	Y24509.D	1	12/03/15	AD	n/a	n/a	VY1033

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-1, FA29657-2, FA29657-3, FA29657-4

CAS No.	Surrogate Recoveries	MS	MSD	FA29657-2	Limits
1868-53-7	Dibromofluoromethane	102%	101%	102%	75-124%
17060-07-0	1,2-Dichloroethane-D4	101%	92%	108%	72-135%
2037-26-5	Toluene-D8	94%	97%	99%	75-126%
460-00-4	4-Bromofluorobenzene	99%	100%	102%	71-133%

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29657-9MS	C0112436.D	1	12/04/15	EP	n/a	n/a	VC4481
FA29657-9MSD	C0112437.D	1	12/04/15	EP	n/a	n/a	VC4481
FA29657-9	C0112434.D	1	12/04/15	EP	n/a	n/a	VC4481
FA29657-9	C0112444.D	1	12/04/15	EP	n/a	n/a	VC4481

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-8, FA29657-9

CAS No.	Compound	FA29657-9		Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
		ug/kg	Q								
67-64-1	Acetone	ND	364	347	95	365	387	106	11	61-152/27	
71-43-2	Benzene	ND	72.7	60.6	83	72.9	65.6	90	8	76-126/26	
75-27-4	Bromodichloromethane	ND	72.7	61.5	85	72.9	67.3	92	9	74-130/25	
75-25-2	Bromoform	ND	72.7	62.8	86	72.9	69.3	95	10	76-127/26	
78-93-3	2-Butanone (MEK)	ND	364	315	87	365	346	95	9	75-137/25	
75-15-0	Carbon Disulfide	ND	72.7	58.0	80	72.9	66.8	92	14	72-122/29	
56-23-5	Carbon Tetrachloride	ND	72.7	58.3	80	72.9	62.9	86	8	78-133/29	
108-90-7	Chlorobenzene	ND	72.7	62.5	86	72.9	68.4	94	9	81-129/29	
75-00-3	Chloroethane	ND	72.7	56.5	78	72.9	70.2	96	22	68-133/29	
67-66-3	Chloroform	ND	72.7	68.4	94	72.9	69.6	95	2	72-123/26	
124-48-1	Dibromochloromethane	ND	72.7	65.6	90	72.9	72.4	99	10	76-127/27	
75-34-3	1,1-Dichloroethane	ND	72.7	62.5	86	72.9	68.3	94	9	73-125/27	
107-06-2	1,2-Dichloroethane	ND	72.7	61.4	84	72.9	66.7	91	8	74-128/23	
75-35-4	1,1-Dichloroethylene	ND	72.7	58.7	81	72.9	65.3	90	11	81-136/28	
156-59-2	cis-1,2-Dichloroethylene	1.2	J	72.7	68.0	92	72.9	74.1	100	9	74-126/26
156-60-5	trans-1,2-Dichloroethylene	ND	72.7	61.5	85	72.9	68.1	93	10	70-127/27	
78-87-5	1,2-Dichloropropane	ND	72.7	60.1	83	72.9	66.2	91	10	74-125/25	
10061-01-5	cis-1,3-Dichloropropene	ND	72.7	63.3	87	72.9	69.2	95	9	80-123/26	
10061-02-6	trans-1,3-Dichloropropene	ND	72.7	64.2	88	72.9	70.0	96	9	75-131/28	
100-41-4	Ethylbenzene	ND	72.7	62.3	86	72.9	67.7	93	8	77-123/31	
591-78-6	2-Hexanone	ND	364	340	93	365	365	100	7	72-133/26	
74-83-9	Methyl Bromide	ND	72.7	55.3	76	72.9	70.7	97	24	65-139/31	
74-87-3	Methyl Chloride	ND	72.7	57.8	79	72.9	63.9	88	10	71-144/27	
75-09-2	Methylene Chloride	ND	72.7	72.9	100	72.9	78.5	108	7	74-137/28	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	364	333	92	365	351	96	5	76-132/26	
100-42-5	Styrene	ND	72.7	64.8	89	72.9	71.2	98	9	78-125/30	
79-34-5	1,1,2,2-Tetrachloroethane	ND	72.7	64.7	89	72.9	68.5	94	6	71-126/30	
127-18-4	Tetrachloroethylene	699 ^b		72.7	58.3	-881* ^a	72.9	65.8	-868* ^a	12	79-130/31
108-88-3	Toluene	ND	72.7	61.7	85	72.9	68.2	94	10	76-124/30	
71-55-6	1,1,1-Trichloroethane	1.2	J	72.7	58.5	79	72.9	62.9	85	7	70-129/27
79-00-5	1,1,2-Trichloroethane	1.4	J	72.7	64.6	87	72.9	69.3	93	7	74-124/28
79-01-6	Trichloroethylene	ND	72.7	59.3	82	72.9	65.0	89	9	75-128/27	
75-01-4	Vinyl Chloride	ND	72.7	55.9	77	72.9	64.2	88	14	76-141/27	
1330-20-7	Xylene (total)	ND	218	185	85	219	203	93	9	80-129/30	

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 2

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29657-9MS	C0112436.D	1	12/04/15	EP	n/a	n/a	VC4481
FA29657-9MSD	C0112437.D	1	12/04/15	EP	n/a	n/a	VC4481
FA29657-9	C0112434.D	1	12/04/15	EP	n/a	n/a	VC4481
FA29657-9	C0112444.D	1	12/04/15	EP	n/a	n/a	VC4481

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-8, FA29657-9

CAS No.	Surrogate Recoveries	MS	MSD	FA29657-9	FA29657-9	Limits
1868-53-7	Dibromofluoromethane	100%	97%	106%	97%	75-124%
17060-07-0	1,2-Dichloroethane-D4	97%	95%	110%	105%	72-135%
2037-26-5	Toluene-D8	100%	101%	97%	94%	75-126%
460-00-4	4-Bromofluorobenzene	103%	104%	99%	98%	71-133%

(a) Outside control limits due to high level in sample relative to spike amount.

(b) Result is from Run #2.

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 1

Job Number: FA29657

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29644-12MS	F0074306.D	1	12/04/15	EP	n/a	n/a	VF2540
FA29644-12MSD	F0074307.D	1	12/04/15	EP	n/a	n/a	VF2540
FA29644-12	F0074303.D	1	12/04/15	EP	n/a	n/a	VF2540

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29657-7

CAS No.	Compound	FA29644-12		Spike	MS	MS	Spike	MSD	MSD	RPD	Limits Rec/RPD
		ug/kg	Q	ug/kg	ug/kg	%	ug/kg	ug/kg	%		
127-18-4	Tetrachloroethylene	4.1		66.3	49.3	68*	54.7	25.6	39*	63*	79-130/31
CAS No. Surrogate Recoveries											
		MS		MSD	FA29644-12 Limits						
1868-53-7	Dibromofluoromethane	106%		134%*	103%	75-124%					
17060-07-0	1,2-Dichloroethane-D4	110%		116%	106%	72-135%					
2037-26-5	Toluene-D8	100%		97%	112%	75-126%					
460-00-4	4-Bromofluorobenzene	114%		97%	124%	71-133%					

* = Outside of Control Limits.

6.3.5
6

Southeast

12/23/15

Technical Report for

United Technologies Corporation

**AECOMSCG: Delavan Spray Technologies; Bamberg, SC
60314964**

Accutest Job Number: FA29765

Sampling Date: 12/04/15

Report to:

**AECOM Environment
10 Patewood Dr Bldg VI, Suite 500
Greenville, SC 29615
doria.cullom@aecom.com**

ATTN: Doria Cullom

Total number of pages in report: 92

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

**Norm Farmer
Technical Director**

Client Service contact: Heather Wandrey 407-425-6700

Certifications: FL (E83510), LA (03051), KS (E-10327), IA (366), IL (200063), NC (573), NJ (FL002), SC (96038001)
DoD ELAP (L-A-B L2229), CA (2937), TX (T104704404), PA (68-03573), VA (460177),
AK, AR, GA, KY, MA, NV, OK, UT, WA

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.
Test results relate only to samples analyzed.

Table of Contents

Sections:

	-1-	
Section 1: Sample Summary	3	1
Section 2: Case Narrative/Conformance Summary	4	2
Section 3: Summary of Hits	9	3
Section 4: Sample Results	11	4
4.1: FA29765-1: MW-26D	12	
4.2: FA29765-2: MW-25D	14	
4.3: FA29765-3: MW-25D-A	16	
4.4: FA29765-4: MW-24	18	
4.5: FA29765-5: AQUEOUS IDW-1	20	
4.6: FA29765-6: SOLID IDW-1	26	
4.7: FA29765-7: TRIP BLANK	29	
Section 5: Misc. Forms	31	
5.1: Chain of Custody	32	
Section 6: GC/MS Volatiles - QC Data Summaries	35	
6.1: Method Blank Summary	36	
6.2: Leachate Blank Summary	40	
6.3: Blank Spike Summary	41	
6.4: Matrix Spike/Matrix Spike Duplicate Summary	46	
Section 7: GC/MS Semi-volatiles - QC Data Summaries	51	
7.1: Method Blank Summary	52	
7.2: Leachate Blank Summary	55	
7.3: Blank Spike Summary	56	
7.4: Matrix Spike/Matrix Spike Duplicate Summary	60	
7.5: Leachate Spike Summary	64	
7.6: Duplicate Summary	65	
Section 8: Metals Analysis - QC Data Summaries	66	
8.1: Prep QC MP29747: Hg	67	
8.2: Prep QC MP29758: Hg	72	
8.3: Prep QC MP29771: As,Ba,Cd,Cr,Pb,Se,Ag	79	
8.4: Prep QC MP29784: Sb,As,Be,Cd,Cr,Cu,Pb,Ni,Se,Ag,Tl,Zn	87	

Sample Summary

United Technologies Corporation

Job No: FA29765

AECOMSCG: Delavan Spray Technologies; Bamberg, SC
Project No: 60314964

Sample Number	Collected Date	Time By	Received	Matrix Code	Type	Client Sample ID
FA29765-1	12/04/15	11:03 RM	12/08/15	AQ	Ground Water	MW-26D
FA29765-2	12/04/15	12:27 RM	12/08/15	AQ	Ground Water	MW-25D
FA29765-3	12/04/15	12:27 RM	12/08/15	AQ	Ground Water	MW-25D-A
FA29765-4	12/04/15	13:27 RM	12/08/15	AQ	Ground Water	MW-24
FA29765-5	12/04/15	14:20 RM	12/08/15	AQ	Water	AQUEOUS IDW-1
FA29765-6	12/04/15	14:15 RM	12/08/15	SO	Soil	SOLID IDW-1
FA29765-7	12/04/15	00:00 RM	12/08/15	AQ	Trip Blank Water	TRIP BLANK

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: United Technologies Corporation

Job No: FA29765

Site: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Report Date 12/23/2015 1:11:53 PM

6 Samples and 1 Trip Blank were collected on 12/04/2015 and were received at Accutest SE on 12/08/2015 properly preserved, at 3.2 Deg. C and intact. These Samples received an Accutest job number of FA29765. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ

Batch ID: VP1393

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29776-2MS, FA29776-2MSD were used as the QC samples indicated.

RPD(s) for MSD for Acetone are outside control limits for sample FA29776-2MSD. Probable cause is due to sample non-homogeneity.

FA29765-1: Sample was not preserved to a pH < 2.

FA29765-2: Sample was not preserved to a pH < 2.

FA29765-3: Sample was not preserved to a pH < 2.

FA29765-4: Sample was not preserved to a pH < 2.

Matrix: AQ

Batch ID: VP1395

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29677-3MS, FA29677-3MSD were used as the QC samples indicated.

Matrix Spike Recovery(s) for 1,1-Dichloroethane, trans-1,2-Dichloroethylene are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike.

FA29765-2: Sample was not preserved to a pH < 2.

FA29765-3: Sample was not preserved to a pH < 2.

FA29765-5: Sample was not preserved to a pH < 2. Sample was treated with an anti-foaming agent.

Matrix: LEACHATE

Batch ID: VN4102

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29765-6MS, FA29765-6MSD were used as the QC samples indicated.

Matrix Spike Recovery(s) for 1,1-Dichloroethylene are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike.

Extractables by GCMS By Method SW846 8270D

Matrix: AQ

Batch ID: OP58654

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29841-3MS, FA29841-3MSD were used as the QC samples indicated.

Matrix Spike Recovery(s) for 3,3'-Dichlorobenzidine, 4-Nitrophenol, Chrysene, Phenol are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike.

Extractables by GCMS By Method SW846 8270D

Matrix: AQ

Batch ID: OP58654

Matrix Spike Duplicate Recovery(s) for 3,3'-Dichlorobenzidine, 3-Nitroaniline are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike.

RPD(s) for MSD for 1,2,4-Trichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 2,4,5-Trichlorophenol, 2,4,6-Trichlorophenol, 2,4-Dichlorophenol, 2,4-Dinitrotoluene, 2-Chloronaphthalene, 2-Methylnaphthalene, 4-Chlorophenyl Phenyl Ether, Acenaphthene, Benzyl Alcohol, bis(2-Chloroethoxy)methane, Dibenzofuran, Dimethyl Phthalate, Fluorene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Isophorone are outside control limits for sample OP58654-MSD. Probable cause is due to sample non-homogeneity.

Sample(s) OP58654-MS has surrogates outside control limits. Probable cause is due to matrix interference.

OP58654-MS for Phenol-d5: Outside control limits. Sample was ND.

FA29765-5 for 2-Nitroaniline: Associated ICV outside control limits.

Matrix: LEACHATE

Batch ID: OP58696

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29695-1MS, FA29695-1MSD, FA29765-6DUP, FA29902-6LS were used as the QC samples indicated.

Metals By Method SW846 6010C

Matrix: AQ

Batch ID: MP29784

All samples were digested within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA30018-1DUP, FA30018-1MS, FA30018-1MSD, FA30018-1PS, FA30018-1SDL were used as the QC samples for metals.

RPD(s) for Duplicate for Antimony, Lead are outside control limits for sample MP29784-D1. RPD acceptable due to low duplicate and sample concentrations.

RPD(s) for Serial Dilution for Antimony, Lead are outside control limits for sample MP29784-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Matrix: LEACHATE

Batch ID: MP29771

All samples were digested within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29694-1MS, FA29694-1MSD, FA29694-1SDL, FA29765-6DUP were used as the QC samples for metals.

RPD(s) for Duplicate for Selenium are outside control limits for sample MP29771-D2. RPD acceptable due to low duplicate and sample concentrations.

RPD(s) for Serial Dilution for Lead, Selenium are outside control limits for sample MP29771-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Metals By Method SW846 7470A

Matrix: AQ

Batch ID: MP29747

All samples were digested within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29760-17FDUP, FA29760-17FMS, FA29760-17FMSD, FA29760-17FSDL were used as the QC samples for metals.

Matrix: LEACHATE

Batch ID: MP29758

All samples were digested within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA29696-1MS, FA29696-1MSD, FA29696-1SDL, FA29765-6DUP were used as the QC samples for metals.

Accutest Laboratories Southeast (ALSE) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALSE and as stated on the COC. ALSE certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the ALSE Quality Manual except as noted above. This report is to be used in its entirety. ALSE is not responsible for any assumptions of data quality if partial data packages are used

Narrative prepared by:

Lovelie Metzgar, QA Officer (signature on file)

Date: December 23, 2015

Laboratory Report Glossary

Client Sample ID: Normally refers to a point of collection – a monitoring well, discharge outfall, treatment facility intake, soil core grid location and depth, or any other identification client assigns to a sample.

Lab Sample ID: Letter prefix identifies one of Accutest laboratories and the rest is a consecutive number of the job (or SDG) received. Number after dash is a sample number and it is unequivocally linked in the LIMS to the Client Sample ID (see above).

Matrix (Matrix Code):

- **AQ- Water Samples**
- **SO- Soil/Solid Samples**
- **LIQ- Non-Water Liquid Samples**
- **OIL- Oil Samples**

Matrix Type:

- **SW for Surface Water**
- **SO for Soil/Sediment**
- **GW for Ground Water**
- **DW for Drinking Water**

All available definitions are found on Chain of Custody form.

Deg. C: Degrees Celsius, measurement of temperature.

Method: Analytical and preparation methods used for the analysis, with the version or revision identified.

Date Sampled: This information is entered from Chain of Custody at the time of login for every sample.

Date Received: When the job was received by Accutest Laboratories.

Percent Solids: Applicable only to SO matrix. For other matrices this field defaults to “n/a”.

Run #: Provides information how many attempts were made in the analysis of the sample. LIMS can merge information from several attempts and lists all of them, including dilution, confirmation, etc. #1 designation is assigned to the analytical run with majority of analytes reported from it, not necessarily in chronological order.

File ID: Actual instrument data acquisition file that produced the final result. Letter prefix identifies the instrument; the rest is a consecutive injection number for that instrument.

DF (Dilution Factor): Most common reasons are either to fit into the range of the calibration, or alleviate matrix interference. DF other than 1 are accompanied with a comment at the end of the sample report.

Analyzed: Date of analysis.

By: Field Technician or Analyst uniquely identified by initials.

Prep Date: Date of sample preparation. If hold time is 72 hours or less, time of preparation is also indicated.

Prep Batch: Letter prefix OP followed by a consecutive number. For VOC analysis preparation happens at the time of analysis, therefore analytical batch and preparation batch are the same. Size of prep batch is limited to 20 field samples of similar matrix and the entire batch should be completed within 12 hour time.

Analytical Batch: Letter prefix identifies the instrument and is followed by a consecutive number. Not limited by a number of samples.

Initial Weight or Initial Volume: Raw sample size used for preparation.

Final Volume: Final volume of extract. If different from method-prescribed volume, reasons are reflected in the comments at the end of the report form.

CAS Number: *Chemical Abstracts Service (CAS)*, a division of the *American Chemical Society*.

Compound: Most commonly used names of chemical compounds.

Result: Depending on project requirements, this field could be set up as text, such as ND (for Non Detected) or a number. The number may be reported with a qualifier.

MDL (Method Detection Limit): This value is defined as 99% probability that analyte above this concentration is positively (qualitatively) identified.

RL (Reporting Limit): This value is supported by the low calibration standard and defines lowest point of quantitative identification of analyte.

DL (Detection Limit): The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration with 99% confidence. At the DL, the false positive rate (Type I error) is 1%.

LOD (Limit of Detection): The smallest concentration of a substance that must be present in a sample in order to be detected at the DL with 99% confidence. At the LOD, the false negative rate (Type II error) is 1%.

LOQ (Limit of Quantitation): The smallest concentration that produces a quantitative result with known and recorded precision and bias.

Units: ug/l (micrograms per liter) for aqueous samples and ug/kg (micrograms per kilogram) for solids (or ppb – parts per billion). The units could be set according to project or state-specific requirements, such as mg/l (milligrams per liter), or mg/kg (milligrams per kilogram).

Qualifiers (Q): Definitions of most often used qualifiers are found at the bottom of each result page. Applied depending on the program – state-specific (Florida A.C. 62-160), CLP-like, AFCEE, DOD QSM, etc.

Tentatively Identified Compound (TIC): Used when client requests a search for analytes that are not part of instrument calibration. Unknown peaks are compared with published spectral libraries and best match is reported as TIC.

Surrogate (S1, S2, S3 etc.): are positive controls that are used in most organics methods to ascertain preparation efficiency and matrix effect in individual samples. These chemicals mimic common method constituents but are unlikely to be found in real samples. Recoveries can be reported for every analytical run used in the analysis.

IS (Internal Standard IS1, IS2, IS3, etc): quantitative reference used to adjust for instrument performance fluctuations.

Area (of chromatographic peak): signal intensity directly related to compound concentration.

RT (Retention Time): time required for analyte to traverse the length of analytical column. Used for compound identification.

ICAL (Initial Calibration): Must pass calibration criteria established by method.

ICV (Independent Calibration Verification): Used to verify ICAL preparation and concentration of calibration points.

CCV (Continuing Calibration Verification): Used to assess calibration status of the instrument and must recover within established acceptance criteria.

MB (Method Blank): is a negative batch control. MB is an aliquot of matrix free of analyte of interest (either ASTM Type II water or appropriate solid substance) that is put through all the preparation and possible clean-up steps alongside investigative (field) samples. MB should be free of interferences above a set level.

BS (Blank Spike, Laboratory Fortified Blank - LFB, Laboratory Control Sample - LCS): is a positive control used to determine method accuracy - in clean matrix, i.e. matrix free of analytes of interest.

BSD (Blank Spike Duplicate): Used to assess recovery reproducibility - method precision – per analytical method requirement. %Recovery and Relative Percent Difference (%RPD) are compared with the established acceptance criteria.

MS and/or MSD (Matrix Spike and Matrix Spike Duplicate): positive batch controls which indicate matrix effect on the precision and accuracy of the method in given sample matrix. Results are expressed in %Recovery and Relative Percent Difference (%RPD), and compared with the established acceptance criteria.

DUP (Matrix Duplicate): Positive batch control, a way of assessing laboratory's precision; however, the composition of the samples is unknown and may not yield meaningful results.

REC (Recovery in Percent): expresses method accuracy.

RPD (Relative Percent Difference): expresses method precision.

Limits: Recovery limits for surrogates and spikes

Summary of Hits

Page 1 of 2

Job Number: FA29765

Account: United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Collected: 12/04/15

3

Lab Sample ID	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
FA29765-1 MW-26D						
1,1-Dichloroethylene ^a	1.9	1.0	0.27	ug/l	SW846 8260B	
cis-1,2-Dichloroethylene ^a	1.1	1.0	0.22	ug/l	SW846 8260B	
Tetrachloroethylene ^a	98.1	1.0	0.33	ug/l	SW846 8260B	
Trichloroethylene ^a	1.1	1.0	0.22	ug/l	SW846 8260B	
FA29765-2 MW-25D						
1,1-Dichloroethylene ^a	3.4	1.0	0.27	ug/l	SW846 8260B	
cis-1,2-Dichloroethylene ^a	1.3	1.0	0.22	ug/l	SW846 8260B	
Tetrachloroethylene ^a	129	2.5	0.81	ug/l	SW846 8260B	
Trichloroethylene ^a	0.95 J	1.0	0.22	ug/l	SW846 8260B	
FA29765-3 MW-25D-A						
1,1-Dichloroethylene ^a	3.5	1.0	0.27	ug/l	SW846 8260B	
cis-1,2-Dichloroethylene ^a	1.3	1.0	0.22	ug/l	SW846 8260B	
Tetrachloroethylene ^a	136	2.5	0.81	ug/l	SW846 8260B	
Trichloroethylene ^a	0.97 J	1.0	0.22	ug/l	SW846 8260B	
FA29765-4 MW-24						
cis-1,2-Dichloroethylene ^a	2.9 J	5.0	1.1	ug/l	SW846 8260B	
Tetrachloroethylene ^a	344	5.0	1.6	ug/l	SW846 8260B	
FA29765-5 AQUEOUS IDW-1						
cis-1,2-Dichloroethylene ^b	0.72 J	2.0	0.44	ug/l	SW846 8260B	
Tetrachloroethylene ^b	86.9	2.0	0.65	ug/l	SW846 8260B	
Antimony	1.5 J	6.0	1.0	ug/l	SW846 6010C	
Beryllium	0.30 J	4.0	0.20	ug/l	SW846 6010C	
Cadmium	1.0 J	5.0	0.20	ug/l	SW846 6010C	
Chromium	12.8	10	1.0	ug/l	SW846 6010C	
Copper	8.6 J	25	1.0	ug/l	SW846 6010C	
Lead	5.5	5.0	1.1	ug/l	SW846 6010C	
Nickel	3.4 J	40	0.40	ug/l	SW846 6010C	
Zinc	34.1	20	4.4	ug/l	SW846 6010C	
FA29765-6 SOLID IDW-1						
Barium	0.12 J	2.0	0.050	mg/l	SW846 6010C	

Summary of Hits

Page 2 of 2

Job Number: FA29765

Account: United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Collected: 12/04/15

3

Lab Sample ID	Client Sample ID	Result/ Analyte	Qual	RL	MDL	Units	Method
---------------	------------------	--------------------	------	----	-----	-------	--------

FA29765-7 TRIP BLANK

Methylene Chloride 5.4 5.0 2.0 ug/l SW846 8260B

(a) Sample was not preserved to a pH < 2.

(b) Sample was not preserved to a pH < 2. Sample was treated with an anti-foaming agent.

Southeast

4

Sample Results

Report of Analysis

Report of Analysis

Client Sample ID: MW-26D
Lab Sample ID: FA29765-1
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	P37602.D	1	12/09/15	KM	n/a	n/a	VP1393
Run #2							

Purge Volume
 Run #1 5.0 ml
 Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.32	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	1.2	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.29	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.50	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	1.9	1.0	0.27	ug/l	
156-59-2	cis-1,2-Dichloroethylene	1.1	1.0	0.22	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.25	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.28	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.22	ug/l	
127-18-4	Tetrachloroethylene	98.1	1.0	0.33	ug/l	
108-88-3	Toluene	ND	1.0	0.40	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.26	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.31	ug/l	
79-01-6	Trichloroethylene	1.1	1.0	0.22	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-26D
Lab Sample ID: FA29765-1
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	1.0	0.25	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.51	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		83-118%
17060-07-0	1,2-Dichloroethane-D4	100%		79-125%
2037-26-5	Toluene-D8	100%		85-112%
460-00-4	4-Bromofluorobenzene	103%		83-118%

(a) Sample was not preserved to a pH < 2.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	MW-25D	Date Sampled:	12/04/15
Lab Sample ID:	FA29765-2	Date Received:	12/08/15
Matrix:	AQ - Ground Water	Percent Solids:	n/a
Method:	SW846 8260B		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	P37603.D	1	12/09/15	KM	n/a	n/a	VP1393
Run #2 ^a	P37655.D	2.5	12/10/15	KM	n/a	n/a	VP1395

Purge Volume	
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.32	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	1.2	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.29	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.50	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	3.4	1.0	0.27	ug/l	
156-59-2	cis-1,2-Dichloroethylene	1.3	1.0	0.22	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.25	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.28	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.22	ug/l	
127-18-4	Tetrachloroethylene	129 ^b	2.5	0.81	ug/l	
108-88-3	Toluene	ND	1.0	0.40	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.26	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.31	ug/l	
79-01-6	Trichloroethylene	0.95	1.0	0.22	ug/l	J

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-25D
Lab Sample ID: FA29765-2
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
---------	----------	--------	----	-----	-------	---

75-01-4	Vinyl Chloride	ND	1.0	0.25	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.51	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
---------	----------------------	--------	--------	--------

1868-53-7	Dibromofluoromethane	100%	100%	83-118%
17060-07-0	1,2-Dichloroethane-D4	100%	102%	79-125%
2037-26-5	Toluene-D8	100%	98%	85-112%
460-00-4	4-Bromofluorobenzene	105%	105%	83-118%

(a) Sample was not preserved to a pH < 2.

(b) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-25D-A
Lab Sample ID: FA29765-3
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Date Sampled: 12/04/15**Date Received:** 12/08/15**Percent Solids:** n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	P37604.D	1	12/09/15	KM	n/a	n/a	VP1393
Run #2 ^a	P37656.D	2.5	12/10/15	KM	n/a	n/a	VP1395

Purge Volume

Run #1 5.0 ml
 Run #2 5.0 ml

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.32	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	1.2	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.29	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.50	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	3.5	1.0	0.27	ug/l	
156-59-2	cis-1,2-Dichloroethylene	1.3	1.0	0.22	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.25	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.28	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.22	ug/l	
127-18-4	Tetrachloroethylene	136 ^b	2.5	0.81	ug/l	
108-88-3	Toluene	ND	1.0	0.40	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.26	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.31	ug/l	
79-01-6	Trichloroethylene	0.97	1.0	0.22	ug/l	J

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-25D-A
Lab Sample ID: FA29765-3
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
---------	----------	--------	----	-----	-------	---

75-01-4	Vinyl Chloride	ND	1.0	0.25	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.51	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
---------	----------------------	--------	--------	--------

1868-53-7	Dibromofluoromethane	101%	101%	83-118%
17060-07-0	1,2-Dichloroethane-D4	102%	103%	79-125%
2037-26-5	Toluene-D8	100%	98%	85-112%
460-00-4	4-Bromofluorobenzene	101%	106%	83-118%

(a) Sample was not preserved to a pH < 2.

(b) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-24
Lab Sample ID: FA29765-4
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	P37605.D	5	12/09/15	KM	n/a	n/a	VP1393
Run #2							

Purge Volume
 Run #1 5.0 ml
 Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	130	50	ug/l	
71-43-2	Benzene	ND	5.0	1.0	ug/l	
75-27-4	Bromodichloromethane	ND	5.0	1.1	ug/l	
75-25-2	Bromoform	ND	5.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	25	5.8	ug/l	
75-15-0	Carbon Disulfide	ND	10	1.5	ug/l	
56-23-5	Carbon Tetrachloride	ND	5.0	1.4	ug/l	
108-90-7	Chlorobenzene	ND	5.0	1.0	ug/l	
75-00-3	Chloroethane	ND	10	2.5	ug/l	
67-66-3	Chloroform	ND	5.0	1.5	ug/l	
124-48-1	Dibromochloromethane	ND	5.0	1.0	ug/l	
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/l	
107-06-2	1,2-Dichloroethane	ND	5.0	1.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	5.0	1.4	ug/l	
156-59-2	cis-1,2-Dichloroethylene	2.9	5.0	1.1	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.0	ug/l	
78-87-5	1,2-Dichloropropane	ND	5.0	1.3	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.3	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.3	ug/l	
100-41-4	Ethylbenzene	ND	5.0	1.0	ug/l	
591-78-6	2-Hexanone	ND	50	10	ug/l	
74-83-9	Methyl Bromide	ND	10	2.5	ug/l	
74-87-3	Methyl Chloride	ND	10	2.5	ug/l	
75-09-2	Methylene Chloride	ND	25	10	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	25	5.0	ug/l	
100-42-5	Styrene	ND	5.0	1.4	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.1	ug/l	
127-18-4	Tetrachloroethylene	344	5.0	1.6	ug/l	
108-88-3	Toluene	ND	5.0	2.0	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.3	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.6	ug/l	
79-01-6	Trichloroethylene	ND	5.0	1.1	ug/l	

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: MW-24
Lab Sample ID: FA29765-4
Matrix: AQ - Ground Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
---------	----------	--------	----	-----	-------	---

75-01-4	Vinyl Chloride	ND	5.0	1.3	ug/l	
1330-20-7	Xylene (total)	ND	15	2.6	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
---------	----------------------	--------	--------	--------

1868-53-7	Dibromofluoromethane	100%		83-118%
17060-07-0	1,2-Dichloroethane-D4	101%		79-125%
2037-26-5	Toluene-D8	102%		85-112%
460-00-4	4-Bromofluorobenzene	104%		83-118%

(a) Sample was not preserved to a pH < 2.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AQUEOUS IDW-1
Lab Sample ID: FA29765-5
Matrix: AQ - Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Date Sampled: 12/04/15

Date Received: 12/08/15

Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	P37657.D	2	12/10/15	KM	n/a	n/a	VP1395
Run #2							

Purge Volume

Run #1 5.0 ml
Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	50	20	ug/l	
71-43-2	Benzene	ND	2.0	0.40	ug/l	
75-27-4	Bromodichloromethane	ND	2.0	0.43	ug/l	
75-25-2	Bromoform	ND	2.0	0.65	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.3	ug/l	
75-15-0	Carbon Disulfide	ND	4.0	0.59	ug/l	
56-23-5	Carbon Tetrachloride	ND	2.0	0.56	ug/l	
108-90-7	Chlorobenzene	ND	2.0	0.40	ug/l	
75-00-3	Chloroethane	ND	4.0	1.0	ug/l	
67-66-3	Chloroform	ND	2.0	0.60	ug/l	
124-48-1	Dibromochloromethane	ND	2.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	ND	2.0	0.40	ug/l	
107-06-2	1,2-Dichloroethane	ND	2.0	0.40	ug/l	
75-35-4	1,1-Dichloroethylene	ND	2.0	0.54	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.72	2.0	0.44	ug/l	J
156-60-5	trans-1,2-Dichloroethylene	ND	2.0	0.42	ug/l	
78-87-5	1,2-Dichloropropane	ND	2.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.50	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.52	ug/l	
100-41-4	Ethylbenzene	ND	2.0	0.40	ug/l	
591-78-6	2-Hexanone	ND	20	4.0	ug/l	
74-83-9	Methyl Bromide	ND	4.0	1.0	ug/l	
74-87-3	Methyl Chloride	ND	4.0	1.0	ug/l	
75-09-2	Methylene Chloride	ND	10	4.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	10	2.0	ug/l	
100-42-5	Styrene	ND	2.0	0.56	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.45	ug/l	
127-18-4	Tetrachloroethylene	86.9	2.0	0.65	ug/l	
108-88-3	Toluene	ND	2.0	0.80	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.51	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.63	ug/l	
79-01-6	Trichloroethylene	ND	2.0	0.43	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AQUEOUS IDW-1
Lab Sample ID: FA29765-5
Matrix: AQ - Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	2.0	0.50	ug/l	
1330-20-7	Xylene (total)	ND	6.0	1.0	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		83-118%
17060-07-0	1,2-Dichloroethane-D4	102%		79-125%
2037-26-5	Toluene-D8	98%		85-112%
460-00-4	4-Bromofluorobenzene	104%		83-118%

(a) Sample was not preserved to a pH < 2. Sample was treated with an anti-foaming agent.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AQUEOUS IDW-1

Lab Sample ID: FA29765-5

Date Sampled: 12/04/15

Matrix: AQ - Water

Date Received: 12/08/15

Method: SW846 8270D SW846 3510C

Percent Solids: n/a

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	U053444.D	1	12/14/15	MV	12/11/15	OP58654	SU2416
Run #2							

	Initial Volume	Final Volume
Run #1	1000 ml	1.0 ml
Run #2		

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	50	10	ug/l	
59-50-7	4-Chloro-3-methyl Phenol	ND	5.0	0.50	ug/l	
95-57-8	2-Chlorophenol	ND	5.0	0.50	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.0	0.50	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	0.50	ug/l	
51-28-5	2,4-Dinitrophenol	ND	25	5.0	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	2.1	ug/l	
95-48-7	2-Methylphenol	ND	5.0	0.50	ug/l	
	3&4-Methylphenol	ND	5.0	1.0	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.88	ug/l	
100-02-7	4-Nitrophenol	ND	25	5.0	ug/l	
87-86-5	Pentachlorophenol	ND	25	5.0	ug/l	
108-95-2	Phenol	ND	5.0	0.50	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	0.68	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.63	ug/l	
83-32-9	Acenaphthene	ND	5.0	0.50	ug/l	
208-96-8	Acenaphthylene	ND	5.0	0.50	ug/l	
120-12-7	Anthracene	ND	5.0	0.50	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.0	0.50	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.0	0.50	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.58	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.66	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.68	ug/l	
100-51-6	Benzyl Alcohol	ND	5.0	0.85	ug/l	
101-55-3	4-Bromophenyl Phenyl Ether	ND	5.0	0.64	ug/l	
85-68-7	Butyl Benzyl Phthalate	ND	5.0	1.0	ug/l	
86-74-8	Carbazole	ND	5.0	0.50	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.50	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.63	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.69	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.50	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.50	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	AQUEOUS IDW-1	Date Sampled:	12/04/15
Lab Sample ID:	FA29765-5	Date Received:	12/08/15
Matrix:	AQ - Water	Percent Solids:	n/a
Method:	SW846 8270D SW846 3510C		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

ABN TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	5.0	0.57	ug/l	
218-01-9	Chrysene	ND	5.0	0.51	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.68	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	5.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	0.63	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	0.65	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	0.52	ug/l	
84-66-2	Diethyl Phthalate	ND	5.0	1.4	ug/l	
131-11-3	Dimethyl Phthalate	ND	5.0	1.0	ug/l	
84-74-2	Di-n-butyl Phthalate	ND	5.0	1.0	ug/l	
117-84-0	Di-n-octyl Phthalate	ND	5.0	1.0	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.0	0.58	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.0	0.69	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.0	1.0	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.50	ug/l	
86-73-7	Fluorene	ND	5.0	0.50	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.63	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.60	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.0	1.0	ug/l	
67-72-1	Hexachloroethane	ND	5.0	0.68	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.63	ug/l	
78-59-1	Isophorone	ND	5.0	0.51	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.0	0.50	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
88-74-4	2-Nitroaniline ^a	ND	5.0	0.50	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.53	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.99	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.52	ug/l	
621-64-7	N-Nitrosodi-n-propylamine	ND	5.0	0.58	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.59	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.51	ug/l	
129-00-0	Pyrene	ND	5.0	0.55	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.50	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	40%		14-67%
4165-62-2	Phenol-d5	25%		10-50%
118-79-6	2,4,6-Tribromophenol	75%		33-118%

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AQUEOUS IDW-1
Lab Sample ID: FA29765-5
Matrix: AQ - Water
Method: SW846 8270D SW846 3510C
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

ABN TCL List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-60-0	Nitrobenzene-d5	69%		42-108%
321-60-8	2-Fluorobiphenyl	70%		40-106%
1718-51-0	Terphenyl-d14	89%		39-121%

(a) Associated ICV outside control limits.

ND = Not detected MDL = Method Detection Limit
 RL = Reporting Limit
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: AQUEOUS IDW-1
Lab Sample ID: FA29765-5
Matrix: AQ - Water
Date Sampled: 12/04/15
Date Received: 12/08/15
Percent Solids: n/a
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Total Metals Analysis

Analyte	Result	RL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Antimony	1.5 J	6.0	1.0	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Arsenic	1.3 U	10	1.3	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Beryllium	0.30 J	4.0	0.20	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Cadmium	1.0 J	5.0	0.20	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Chromium	12.8	10	1.0	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Copper	8.6 J	25	1.0	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Lead	5.5	5.0	1.1	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Mercury	0.030 U	0.50	0.030	ug/l	1	12/09/15	12/09/15	JL	SW846 7470A ¹
Nickel	3.4 J	40	0.40	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Selenium	2.9 U	10	2.9	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Silver	0.70 U	5.0	0.70	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Thallium	1.4 U	10	1.4	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²
Zinc	34.1	20	4.4	ug/l	1	12/17/15	12/17/15	LM	SW846 6010C ²

- (1) Instrument QC Batch: MA12826
- (2) Instrument QC Batch: MA12844
- (3) Prep QC Batch: MP29747
- (4) Prep QC Batch: MP29784

RL = Reporting Limit
 MDL = Method Detection Limit

U = Indicates a result < MDL
 J = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID:	SOLID IDW-1	Date Sampled:	12/04/15
Lab Sample ID:	FA29765-6	Date Received:	12/08/15
Matrix:	SO - Soil	Percent Solids:	n/a
Method:	SW846 8260B SW846 1311		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	N0091109.D	10	12/22/15	RB	12/09/15	OP58627	VN4102
Run #2							

Purge Volume	
Run #1	5.0 ml
Run #2	

VOA TCLP List

TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units	Q
71-43-2	Benzene	ND	D018	0.50	0.010	0.0020	mg/l	
78-93-3	2-Butanone (MEK)	ND	D035	200	0.050	0.012	mg/l	
56-23-5	Carbon Tetrachloride	ND	D019	0.50	0.010	0.0028	mg/l	
108-90-7	Chlorobenzene	ND	D021	100	0.010	0.0020	mg/l	
67-66-3	Chloroform	ND	D022	6.0	0.010	0.0030	mg/l	
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.010	0.0025	mg/l	
107-06-2	1,2-Dichloroethane	ND	D028	0.50	0.010	0.0020	mg/l	
75-35-4	1,1-Dichloroethylene	ND	D029	0.70	0.010	0.0027	mg/l	
127-18-4	Tetrachloroethylene	ND	D039	0.70	0.010	0.0033	mg/l	
79-01-6	Trichloroethylene	ND	D040	0.50	0.010	0.0022	mg/l	
75-01-4	Vinyl Chloride	ND	D043	0.20	0.010	0.0025	mg/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		83-118%
17060-07-0	1,2-Dichloroethane-D4	106%		79-125%
2037-26-5	Toluene-D8	99%		85-112%
460-00-4	4-Bromofluorobenzene	100%		83-118%

ND = Not detected MDL = Method Detection Limit
 MCL = Maximum Contamination Level (40 CFR 261 6/96)
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	SOLID IDW-1	Date Sampled:	12/04/15
Lab Sample ID:	FA29765-6	Date Received:	12/08/15
Matrix:	SO - Soil	Percent Solids:	n/a
Method:	SW846 8270D SW846 3510C		
Project:	AECOMSCG: Delavan Spray Technologies; Bamberg, SC		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	X043950.D	1	12/16/15	MV	12/15/15	OP58696	SX1976
Run #2							

	Initial Volume	Final Volume
Run #1	100 ml	1.0 ml
Run #2		

ABN TCLP List

TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units	Q
95-48-7	2-Methylphenol	ND	D023	200	0.050	0.0050	mg/l	
	3&4-Methylphenol	ND	D024	200	0.050	0.010	mg/l	
87-86-5	Pentachlorophenol	ND	D037	100	0.25	0.050	mg/l	
95-95-4	2,4,5-Trichlorophenol	ND	D041	400	0.050	0.0068	mg/l	
88-06-2	2,4,6-Trichlorophenol	ND	D042	2.0	0.050	0.0063	mg/l	
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.050	0.0065	mg/l	
121-14-2	2,4-Dinitrotoluene	ND	D030	0.13	0.050	0.0058	mg/l	
118-74-1	Hexachlorobenzene	ND	D032	0.13	0.050	0.0063	mg/l	
87-68-3	Hexachlorobutadiene	ND	D033	0.50	0.050	0.0060	mg/l	
67-72-1	Hexachloroethane	ND	D034	3.0	0.050	0.0068	mg/l	
98-95-3	Nitrobenzene	ND	D036	2.0	0.050	0.0052	mg/l	
110-86-1	Pyridine	ND	D038	5.0	0.10	0.020	mg/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	44%		14-67%
4165-62-2	Phenol-d5	29%		10-50%
118-79-6	2,4,6-Tribromophenol	79%		33-118%
4165-60-0	Nitrobenzene-d5	78%		42-108%
321-60-8	2-Fluorobiphenyl	74%		40-106%
1718-51-0	Terphenyl-d14	101%		39-121%

ND = Not detected MDL = Method Detection Limit
 MCL = Maximum Contamination Level (40 CFR 261 6/96)
 E = Indicates value exceeds calibration range

J = Indicates an estimated value
 B = Indicates analyte found in associated method blank
 N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: SOLID IDW-1
Lab Sample ID: FA29765-6
Matrix: SO - Soil
Date Sampled: 12/04/15
Date Received: 12/08/15
Percent Solids: n/a
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	MDL	Units	DF	Prep	Analyzed By	Method
Arsenic	0.013 U	D004	5.0	0.10	0.013	mg/l	1	12/15/15	12/15/15	LM SW846 6010C ²
Barium	0.12 J	D005	100	2.0	0.050	mg/l	1	12/15/15	12/15/15	LM SW846 6010C ²
Cadmium	0.0020 U	D006	1.0	0.050	0.0020	mg/l	1	12/15/15	12/15/15	LM SW846 6010C ²
Chromium	0.010 U	D007	5.0	0.10	0.010	mg/l	1	12/15/15	12/15/15	LM SW846 6010C ²
Lead	0.011 U	D008	5.0	0.050	0.011	mg/l	1	12/15/15	12/15/15	LM SW846 6010C ²
Mercury	0.00050 U	D009	0.20	0.0050	0.00050	mg/l	1	12/11/15	12/11/15	JL SW846 7470A ¹
Selenium	0.029 U	D010	1.0	0.10	0.029	mg/l	1	12/15/15	12/15/15	LM SW846 6010C ²
Silver	0.0070 U	D011	5.0	0.10	0.0070	mg/l	1	12/15/15	12/15/15	LM SW846 6010C ²

(1) Instrument QC Batch: MA12831

(2) Instrument QC Batch: MA12837

(3) Prep QC Batch: MP29758

(4) Prep QC Batch: MP29771

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

MCL = Maximum Contamination Level (40 CFR 261 6/96)

J = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: TRIP BLANK
Lab Sample ID: FA29765-7
Matrix: AQ - Trip Blank Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Date Sampled: 12/04/15**Date Received:** 12/08/15**Percent Solids:** n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	P37607.D	1	12/09/15	KM	n/a	n/a	VP1393
Run #2							

Purge Volume

Run #1 5.0 ml
 Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.32	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	1.2	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.29	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.50	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.27	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.25	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	5.4	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.28	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.22	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.33	ug/l	
108-88-3	Toluene	ND	1.0	0.40	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.26	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.31	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.22	ug/l	

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: TRIP BLANK
Lab Sample ID: FA29765-7
Matrix: AQ - Trip Blank Water
Method: SW846 8260B
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
75-01-4	Vinyl Chloride	ND	1.0	0.25	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.51	ug/l	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		83-118%
17060-07-0	1,2-Dichloroethane-D4	103%		79-125%
2037-26-5	Toluene-D8	99%		85-112%
460-00-4	4-Bromofluorobenzene	102%		83-118%

ND = Not detected MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Southeast

ACCUTEST[®]

LABORATORIES

Misc. Forms

5

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody

Accutest Laboratories Southeast

Chain of Custody

4405 Vineland Road, Suite C-15 Orlando, FL 32811
TEL. 407-425-6700 • FAX: 407-425-0707
www.accutest.com

FA29765

PAGE 1 OF 1

Client / Reporting Information		Project Information		Accutest JOB #		Accutest Quote #		SKIFF#		Analytical Information		Matrix Codes			
Company Name AECOM Address 10 Patewood Blvd Suite 500 City Grenville State SC Zip 29615 Project Contact Don Culom E-mail don.culom@aeca.com Phone# 864-234-3000 Sampler(s) Name(s) (Printed) Randy Morgan		Project Name UTC Delavan Spray Technologies Street 4331 Main Hwy City Bamberg State SC Project # 6034964 Fax # Client Purchase Order # 69402CM													
Accutest Sample #	Field ID / Point of Collection		COLLECTION		CONTAINER INFORMATION										
	DATE	TIME	SAMPLED BY	MATRIX	TOTAL # OF BOTTLES	OTHER	NAME	HCl	NaOH	H2SO4	HNO3	NaOH-THAC	D/WATER	NEON	
1	MW-260	1/16/15 1103	KM	GW	3	3				X	TCL SWCS 8220	TCL SWCS 8220	TCL SWCS 8220	TCL SWCS 8220	
1	MW-260-MS	1/16/15 1103	KM	GW	3	3				X	Metals +4 PMM	Metals +4 PMM	Metals +4 PMM	Metals +4 PMM	
1	MW-260-MSD	1/16/15 1103	KM	GW	3	3				X					
2	MW-25D	1/16/15 1227	KM	GW	3	3				X					
3	MW-25D-a	1/16/15 1227	KM	GW	3	3				X					
4	MW-24	1/16/15 1327	KM	GW	3	3				X					
5	Aqueous IDW-1	1/16/15 1420	KM	WW	6	5	1			X	X				
6	Solid IDW-1	1/16/15 1415	KM	SD	2	2				X	X	X	X		
7	TRIP Blank				2					X					
	Temp Blank				1										
TURNAROUND TIME (Business Days)		Data Deliverable Information										Comments / Remarks			
<input checked="" type="checkbox"/> 10 Days Standard <input type="checkbox"/> 7 Day RUSH <input type="checkbox"/> 5 Day RUSH <input type="checkbox"/> 3 Day EMERGENCY <input type="checkbox"/> 2 Day EMERGENCY <input type="checkbox"/> 1 Day EMERGENCY <input type="checkbox"/> OTHER		<input type="checkbox"/> COMMERCIAL "A" (RESULTS ONLY) <input type="checkbox"/> COMMERCIAL "B" (RESULTS PLUS QC) <input type="checkbox"/> REDT1 (EPA LEVEL 3) <input type="checkbox"/> FULT1 (EPA LEVEL 4) <input checked="" type="checkbox"/> EDD'S <i>UTC per Scope of Work</i>								<i>Saturday delivery</i>					
Emergency or Rush T/A Data Available VIA Email or Lablink															
Sample Custody must be documented below each time samples change possession, including courier delivery.															
Relinquished by Sampler:	Date Time:	Received By:	Relinquished by:	Date Time:	Received By:										
1 <i>Randy Morgan</i>	1/16/15 1400	2 FedEx 802045947106	3 <i>EX</i>	1/16/15 1430	<i>EX</i>										
Relinquished by:	Date Time:	Received By:	Relinquished by:	Date Time:	Received By:										
5		6	7		8										
Lab Use Only: Custody Seal in Place: Y N Temp Blank Provided: Y N Preserved where Applicable: Y N Total # of Coolers: 1 Cooler Temperature (s) Celsius: 3.2															

FA29765: Chain of Custody
Page 1 of 3

ACCUATEST LABORATORIES SAMPLE RECEIPT CONFIRMATION

ACCUTEST'S JOB NUMBER: FA29765 CLIENT: AECOM PROJECT: 60314964
DATE/TIME RECEIVED: 12/5/15 9:30 {MM/DD/YY 24:00} NUMBER OF COOLERS RECEIVED: 1
METHOD OF DELIVERY: FEDEX UPS ACCUTEST COURIER DELIVERY OTHER:
AIRBILL NUMBERS: 8020 4594 7106

COOLER INFORMATION

- CUSTODY SEAL NOT PRESENT OR NOT INTACT
- CHAIN OF CUSTODY NOT RECEIVED (COC)
- ANALYSIS REQUESTED IS UNCLEAR OR MISSING
- SAMPLE DATES OR TIMES UNCLEAR OR MISSING
- TEMPERATURE CRITERIA NOT MET

TRIP BLANK INFORMATION

- TRIP BLANK PROVIDED
- TRIP BLANK NOT PROVIDED
- TRIP BLANK NOT ON COC
- TRIP BLANK INTACT
- TRIP BLANK NOT INTACT
- RECEIVED WATER TRIP BLANK
- RECEIVED SOIL TRIP BLANK

MISC. INFORMATION

NUMBER OF ENCORES ? 25-GRAM _____ 5-GRAM _____

NUMBER OF 5035 FIELD KITS ?

NUMBER OF LAB FILTERED METALS ?

19. *Leucosia* (Leucosia) *leucostoma* (Fabricius)

TEST STRIP LOT#s pH 0-3 204

SUMMARY OF COMMENTS

TEMPERATURE INFORMATION

IR THERM ID	1	CORR. FACTOR	0.4
OBSERVED TEMPS:	36		
CORRECTED TEMPS:	32		(USED)

SAMPLE INFORMATION

- INCORRECT NUMBER OF CONTAINERS USED
- SAMPLE RECEIVED IMPROPERLY PRESERVED
- INSUFFICIENT VOLUME FOR ANALYSIS
- DATES/TIMES ON COC DO NOT MATCH SAMPLE LABEL
- ID'S ON COC DO NOT MATCH LABEL
- VOC VIALS HAVE HEADSPACE (MACRO BUBBLES)
- BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED
- NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED
- UNCLEAR FILTERING OR COMPOSITING INSTRUCTIONS
- SAMPLE CONTAINER(S) RECEIVED BROKEN
- 5035 FIELD KITS NOT RECEIVED WITHIN 48 HOURS
- BULK VOA SOIL JARS NOT RECEIVED WITHIN 48 HOURS
- % SOLIDS JAR NOT RECEIVED
- RESIDUAL CHLORINE PRESENT

{APPLICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS}

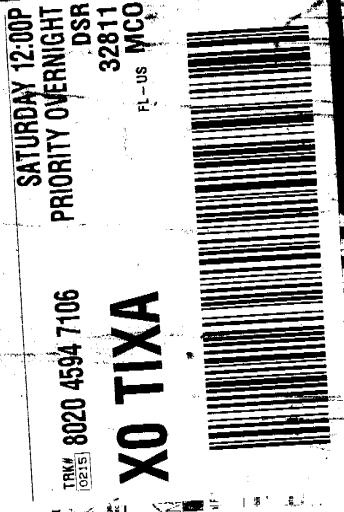
TEST STRIP LOT#s pH 0-3 204413A

pH 10-12 219813A

OTHER (specify)

SUMMARY OF COMMENTS:

TECHNICIAN SIGNATURE/DATE


NF 11/15

receipt confirmation 111015.xls

12-8-15

FA29765: Chain of Custody

Page 2 of 3

FA29765: Chain of Custody
Page 3 of 3

Southeast

LABORATORIES

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Page 1 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1393-MB	P37601.D	1	12/09/15	KM	n/a	n/a	VP1393

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-1, FA29765-2, FA29765-3, FA29765-4, FA29765-7

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.32	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	1.2	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.29	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.50	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.27	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.25	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.28	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.22	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.33	ug/l	
108-88-3	Toluene	ND	1.0	0.40	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.26	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.31	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.22	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.25	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.51	ug/l	

Method Blank Summary

Page 2 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1393-MB	P37601.D	1	12/09/15	KM	n/a	n/a	VP1393

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-1, FA29765-2, FA29765-3, FA29765-4, FA29765-7

CAS No.	Surrogate Recoveries	Limits	
1868-53-7	Dibromofluoromethane	100%	83-118%
17060-07-0	1,2-Dichloroethane-D4	102%	79-125%
2037-26-5	Toluene-D8	100%	85-112%
460-00-4	4-Bromofluorobenzene	103%	83-118%

Method Blank Summary

Page 1 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1395-MB	P37652.D	1	12/10/15	KM	n/a	n/a	VP1395

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-2, FA29765-3, FA29765-5

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	25	10	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.22	ug/l	
75-25-2	Bromoform	ND	1.0	0.32	ug/l	
78-93-3	2-Butanone (MEK)	ND	5.0	1.2	ug/l	
75-15-0	Carbon Disulfide	ND	2.0	0.29	ug/l	
56-23-5	Carbon Tetrachloride	ND	1.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	2.0	0.50	ug/l	
67-66-3	Chloroform	ND	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.27	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.22	ug/l	
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.21	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.25	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.25	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.26	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
74-83-9	Methyl Bromide	ND	2.0	0.50	ug/l	
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.28	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.22	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.33	ug/l	
108-88-3	Toluene	ND	1.0	0.40	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.26	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.31	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.22	ug/l	
75-01-4	Vinyl Chloride	ND	1.0	0.25	ug/l	
1330-20-7	Xylene (total)	ND	3.0	0.51	ug/l	

Method Blank Summary

Page 2 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1395-MB	P37652.D	1	12/10/15	KM	n/a	n/a	VP1395

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-2, FA29765-3, FA29765-5

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	100%	83-118%
17060-07-0	1,2-Dichloroethane-D4	102%	79-125%
2037-26-5	Toluene-D8	99%	85-112%
460-00-4	4-Bromofluorobenzene	103%	83-118%

Leachate Blank Summary

Page 1 of 1

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58627-LB	N0091098.D	10	12/22/15	RB	12/09/15	OP58627	VN4102

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-6

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	10	2.0	ug/l	
78-93-3	2-Butanone (MEK)	ND	50	12	ug/l	
56-23-5	Carbon Tetrachloride	ND	10	2.8	ug/l	
108-90-7	Chlorobenzene	ND	10	2.0	ug/l	
67-66-3	Chloroform	ND	10	3.0	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	10	2.5	ug/l	
107-06-2	1,2-Dichloroethane	ND	10	2.0	ug/l	
75-35-4	1,1-Dichloroethylene	ND	10	2.7	ug/l	
127-18-4	Tetrachloroethylene	ND	10	3.3	ug/l	
79-01-6	Trichloroethylene	ND	10	2.2	ug/l	
75-01-4	Vinyl Chloride	ND	10	2.5	ug/l	

CAS No. Surrogate Recoveries

Limits

1868-53-7	Dibromofluoromethane	100%	83-118%
17060-07-0	1,2-Dichloroethane-D4	103%	79-125%
2037-26-5	Toluene-D8	98%	85-112%
460-00-4	4-Bromofluorobenzene	104%	83-118%

Blank Spike Summary

Page 1 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1393-BS	P37600.D	1	12/09/15	KM	n/a	n/a	VP1393

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-1, FA29765-2, FA29765-3, FA29765-4, FA29765-7

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	128	102	50-147
71-43-2	Benzene	25	25.1	100	81-122
75-27-4	Bromodichloromethane	25	26.5	106	79-123
75-25-2	Bromoform	25	23.3	93	66-123
78-93-3	2-Butanone (MEK)	125	116	93	56-143
75-15-0	Carbon Disulfide	25	23.8	95	66-148
56-23-5	Carbon Tetrachloride	25	29.1	116	76-136
108-90-7	Chlorobenzene	25	23.9	96	82-124
75-00-3	Chloroethane	25	27.7	111	62-144
67-66-3	Chloroform	25	25.1	100	80-124
124-48-1	Dibromochloromethane	25	25.9	104	78-122
75-34-3	1,1-Dichloroethane	25	25.8	103	81-122
107-06-2	1,2-Dichloroethane	25	25.2	101	75-125
75-35-4	1,1-Dichloroethylene	25	26.8	107	78-137
156-59-2	cis-1,2-Dichloroethylene	25	24.0	96	78-120
156-60-5	trans-1,2-Dichloroethylene	25	27.3	109	76-127
78-87-5	1,2-Dichloropropane	25	25.3	101	76-124
10061-01-5	cis-1,3-Dichloropropene	25	26.2	105	75-118
10061-02-6	trans-1,3-Dichloropropene	25	26.4	106	80-120
100-41-4	Ethylbenzene	25	24.1	96	81-121
591-78-6	2-Hexanone	125	109	87	61-129
74-83-9	Methyl Bromide	25	31.2	125	59-143
74-87-3	Methyl Chloride	25	28.1	112	50-159
75-09-2	Methylene Chloride	25	25.3	101	69-135
108-10-1	4-Methyl-2-pentanone (MIBK)	125	108	86	66-122
100-42-5	Styrene	25	23.2	93	78-119
79-34-5	1,1,2,2-Tetrachloroethane	25	22.7	91	72-120
127-18-4	Tetrachloroethylene	25	25.5	102	76-135
108-88-3	Toluene	25	24.0	96	80-120
71-55-6	1,1,1-Trichloroethane	25	26.1	104	75-130
79-00-5	1,1,2-Trichloroethane	25	23.4	94	76-119
79-01-6	Trichloroethylene	25	24.9	100	81-126
75-01-4	Vinyl Chloride	25	31.3	125	69-159
1330-20-7	Xylene (total)	75	73.7	98	80-126

* = Outside of Control Limits.

Blank Spike Summary

Page 2 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1393-BS	P37600.D	1	12/09/15	KM	n/a	n/a	VP1393

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-1, FA29765-2, FA29765-3, FA29765-4, FA29765-7

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	100%	83-118%
17060-07-0	1,2-Dichloroethane-D4	102%	79-125%
2037-26-5	Toluene-D8	98%	85-112%
460-00-4	4-Bromofluorobenzene	99%	83-118%

* = Outside of Control Limits.

Blank Spike Summary

Page 1 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1395-BS	P37651.D	1	12/10/15	KM	n/a	n/a	VP1395

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-2, FA29765-3, FA29765-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	127	102	50-147
71-43-2	Benzene	25	28.0	112	81-122
75-27-4	Bromodichloromethane	25	29.0	116	79-123
75-25-2	Bromoform	25	25.4	102	66-123
78-93-3	2-Butanone (MEK)	125	118	94	56-143
75-15-0	Carbon Disulfide	25	29.3	117	66-148
56-23-5	Carbon Tetrachloride	25	33.2	133	76-136
108-90-7	Chlorobenzene	25	25.9	104	82-124
75-00-3	Chloroethane	25	24.3	97	62-144
67-66-3	Chloroform	25	28.1	112	80-124
124-48-1	Dibromochloromethane	25	28.0	112	78-122
75-34-3	1,1-Dichloroethane	25	29.1	116	81-122
107-06-2	1,2-Dichloroethane	25	27.5	110	75-125
75-35-4	1,1-Dichloroethylene	25	32.1	128	78-137
156-59-2	cis-1,2-Dichloroethylene	25	26.9	108	78-120
156-60-5	trans-1,2-Dichloroethylene	25	31.1	124	76-127
78-87-5	1,2-Dichloropropane	25	27.5	110	76-124
10061-01-5	cis-1,3-Dichloropropene	25	28.8	115	75-118
10061-02-6	trans-1,3-Dichloropropene	25	29.0	116	80-120
100-41-4	Ethylbenzene	25	26.2	105	81-121
591-78-6	2-Hexanone	125	104	83	61-129
74-83-9	Methyl Bromide	25	27.1	108	59-143
74-87-3	Methyl Chloride	25	25.0	100	50-159
75-09-2	Methylene Chloride	25	28.1	112	69-135
108-10-1	4-Methyl-2-pentanone (MIBK)	125	105	84	66-122
100-42-5	Styrene	25	25.4	102	78-119
79-34-5	1,1,2,2-Tetrachloroethane	25	24.1	96	72-120
127-18-4	Tetrachloroethylene	25	27.2	109	76-135
108-88-3	Toluene	25	25.8	103	80-120
71-55-6	1,1,1-Trichloroethane	25	29.3	117	75-130
79-00-5	1,1,2-Trichloroethane	25	25.1	100	76-119
79-01-6	Trichloroethylene	25	28.0	112	81-126
75-01-4	Vinyl Chloride	25	27.5	110	69-159
1330-20-7	Xylene (total)	75	79.2	106	80-126

* = Outside of Control Limits.

Blank Spike Summary

Page 2 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VP1395-BS	P37651.D	1	12/10/15	KM	n/a	n/a	VP1395

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-2, FA29765-3, FA29765-5

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	103%	83-118%
17060-07-0	1,2-Dichloroethane-D4	102%	79-125%
2037-26-5	Toluene-D8	97%	85-112%
460-00-4	4-Bromofluorobenzene	102%	83-118%

* = Outside of Control Limits.

Blank Spike Summary

Page 1 of 1

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VN4102-BS	N0091097.D	10	12/22/15	RB	n/a	n/a	VN4102

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	250	284	114	81-122
78-93-3	2-Butanone (MEK)	1250	1070	86	56-143
56-23-5	Carbon Tetrachloride	250	263	105	76-136
108-90-7	Chlorobenzene	250	287	115	82-124
67-66-3	Chloroform	250	279	112	80-124
106-46-7	1,4-Dichlorobenzene	250	286	114	78-120
107-06-2	1,2-Dichloroethane	250	273	109	75-125
75-35-4	1,1-Dichloroethylene	250	296	118	78-137
127-18-4	Tetrachloroethylene	250	288	115	76-135
79-01-6	Trichloroethylene	250	278	111	81-126
75-01-4	Vinyl Chloride	250	235	94	69-159

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	99%	83-118%
17060-07-0	1,2-Dichloroethane-D4	98%	79-125%
2037-26-5	Toluene-D8	100%	85-112%
460-00-4	4-Bromofluorobenzene	99%	83-118%

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29776-2MS	P37622.D	1	12/09/15	KM	n/a	n/a	VP1393
FA29776-2MSD	P37623.D	1	12/09/15	KM	n/a	n/a	VP1393
FA29776-2 ^a	P37617.D	1	12/09/15	KM	n/a	n/a	VP1393

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-1, FA29765-2, FA29765-3, FA29765-4, FA29765-7

CAS No.	Compound	FA29776-2		Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		ug/l	Q								
67-64-1	Acetone	ND		125	156	125	125	123	98	24*	50-147/21
71-43-2	Benzene	0.24	J	25	27.8	110	25	27.6	109	1	81-122/14
75-27-4	Bromodichloromethane	ND		25	28.7	115	25	26.6	106	8	79-123/19
75-25-2	Bromoform	ND		25	23.2	93	25	22.3	89	4	66-123/21
78-93-3	2-Butanone (MEK)	ND		125	122	98	125	131	105	7	56-143/18
75-15-0	Carbon Disulfide	0.72	J	25	28.2	110	25	25.3	98	11	66-148/23
56-23-5	Carbon Tetrachloride	ND		25	30.9	124	25	29.1	116	6	76-136/23
108-90-7	Chlorobenzene	ND		25	25.5	102	25	25.3	101	1	82-124/14
75-00-3	Chloroethane	ND		25	26.4	106	25	22.0	88	18	62-144/20
67-66-3	Chloroform	ND		25	27.7	111	25	27.7	111	0	80-124/15
124-48-1	Dibromochloromethane	ND		25	25.9	104	25	24.5	98	6	78-122/19
75-34-3	1,1-Dichloroethane	ND		25	28.5	114	25	28.7	115	1	81-122/15
107-06-2	1,2-Dichloroethane	13.6		25	40.8	109	25	40.8	109	0	75-125/14
75-35-4	1,1-Dichloroethylene	ND		25	32.4	130	25	33.0	132 ^b	2	78-137/18
156-59-2	cis-1,2-Dichloroethylene	ND		25	27.0	108	25	26.4	106	2	78-120/15
156-60-5	trans-1,2-Dichloroethylene	ND		25	30.4	122	25	30.3	121	0	76-127/17
78-87-5	1,2-Dichloropropane	ND		25	27.7	111	25	27.7	111	0	76-124/14
10061-01-5	cis-1,3-Dichloropropene	ND		25	27.1	108	25	25.2	101	7	75-118/23
10061-02-6	trans-1,3-Dichloropropene	ND		25	27.4	110	25	25.2	101	8	80-120/22
100-41-4	Ethylbenzene	ND		25	26.1	104	25	25.7	103	2	81-121/14
591-78-6	2-Hexanone	ND		125	118	94	125	125	100	6	61-129/18
74-83-9	Methyl Bromide	ND		25	28.2	113	25	27.3	109	3	59-143/19
74-87-3	Methyl Chloride	ND		25	29.4	118	25	28.9	116	2	50-159/19
75-09-2	Methylene Chloride	ND		25	29.1	116	25	29.0	116	0	69-135/16
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		125	119	95	125	126	101	6	66-122/16
100-42-5	Styrene	ND		25	25.2	101	25	25.1	100	0	78-119/23
79-34-5	1,1,2,2-Tetrachloroethane	ND		25	24.5	98	25	24.8	99	1	72-120/14
127-18-4	Tetrachloroethylene	ND		25	26.6	106	25	25.7	103	3	76-135/16
108-88-3	Toluene	ND		25	25.5	102	25	25.5	102	0	80-120/14
71-55-6	1,1,1-Trichloroethane	ND		25	28.2	113	25	27.7	111	2	75-130/16
79-00-5	1,1,2-Trichloroethane	ND		25	24.9	100	25	25.1	100	1	76-119/14
79-01-6	Trichloroethylene	ND		25	27.7	111	25	27.1	108	2	81-126/15
75-01-4	Vinyl Chloride	ND		25	29.9	120	25	29.9	120	0	69-159/18
1330-20-7	Xylene (total)	ND		75	78.3	104	75	77.4	103	1	80-126/15

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29776-2MS	P37622.D	1	12/09/15	KM	n/a	n/a	VP1393
FA29776-2MSD	P37623.D	1	12/09/15	KM	n/a	n/a	VP1393
FA29776-2 ^a	P37617.D	1	12/09/15	KM	n/a	n/a	VP1393

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-1, FA29765-2, FA29765-3, FA29765-4, FA29765-7

CAS No.	Surrogate Recoveries	MS	MSD	FA29776-2	Limits
1868-53-7	Dibromofluoromethane	101%	102%	99%	83-118%
17060-07-0	1,2-Dichloroethane-D4	104%	105%	106%	79-125%
2037-26-5	Toluene-D8	96%	97%	100%	85-112%
460-00-4	4-Bromofluorobenzene	100%	102%	104%	83-118%

(a) Sample was not preserved to a pH < 2.

(b) Outside DOD QSM control limits.

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29677-3MS	P37673.D	1	12/10/15	KM	n/a	n/a	VP1395
FA29677-3MSD	P37674.D	1	12/10/15	KM	n/a	n/a	VP1395
FA29677-3	P37662.D	1	12/10/15	KM	n/a	n/a	VP1395

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-2, FA29765-3, FA29765-5

CAS No.	Compound	FA29677-3		Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		ug/l	Q								
67-64-1	Acetone	25 U	125	126	101	125	130	104	3	50-147/21	
71-43-2	Benzene	1.0 U	25	30.0	120	25	28.9	116	4	81-122/14	
75-27-4	Bromodichloromethane	1.0 U	25	29.3	117	25	28.0	112	5	79-123/19	
75-25-2	Bromoform	1.0 U	25	19.9	80	25	20.9	84	5	66-123/21	
78-93-3	2-Butanone (MEK)	5.0 U	125	124	99	125	128	102	3	56-143/18	
75-15-0	Carbon Disulfide	2.0 U	25	23.2	93	25	22.4	90	4	66-148/23	
56-23-5	Carbon Tetrachloride	1.0 U	25	34.1	136	25	31.6	126	8	76-136/23	
108-90-7	Chlorobenzene	1.0 U	25	26.4	106	25	25.6	102	3	82-124/14	
75-00-3	Chloroethane	2.0 U	25	25.1	100	25	25.5	102	2	62-144/20	
67-66-3	Chloroform	1.0 U	25	29.4	118	25	28.8	115	2	80-124/15	
124-48-1	Dibromochloromethane	1.0 U	25	24.5	98	25	24.1	96	2	78-122/19	
75-34-3	1,1-Dichloroethane	19.5	25	50.5	124*	25	49.8	121	1	81-122/15	
107-06-2	1,2-Dichloroethane	1.0 U	25	30.0	120	25	29.4	118	2	75-125/14	
75-35-4	1,1-Dichloroethylene	8.9	25	43.1	137	25	41.6	131	4	78-137/18	
156-59-2	cis-1,2-Dichloroethylene	71.8	25	101	117	25	97.8	104	3	78-120/15	
156-60-5	trans-1,2-Dichloroethylene	0.87	J	25	33.1	129*	25	32.0	125	3	76-127/17
78-87-5	1,2-Dichloropropane	1.0 U	25	29.4	118	25	28.6	114	3	76-124/14	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	25	25.4	102	25	24.2	97	5	75-118/23	
10061-02-6	trans-1,3-Dichloropropene	1.0 U	25	25.0	100	25	24.0	96	4	80-120/22	
100-41-4	Ethylbenzene	1.0 U	25	26.5	106	25	26.3	105	1	81-121/14	
591-78-6	2-Hexanone	10 U	125	124	99	125	125	100	1	61-129/18	
74-83-9	Methyl Bromide	2.0 U	25	26.6	106	25	26.0	104	2	59-143/19	
74-87-3	Methyl Chloride	2.0 U	25	29.3	117	25	28.5	114	3	50-159/19	
75-09-2	Methylene Chloride	5.0 U	25	30.1	120	25	30.1	120	0	69-135/16	
108-10-1	4-Methyl-2-pentanone (MIBK)	5.0 U	125	123	98	125	125	100	2	66-122/16	
100-42-5	Styrene	1.0 U	25	23.1	92	25	21.4	86	8	78-119/23	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	25	25.0	100	25	25.4	102	2	72-120/14	
127-18-4	Tetrachloroethylene	0.53	J	25	27.5	108	25	26.6	104	3	76-135/16
108-88-3	Toluene	1.0 U	25	26.1	104	25	25.8	103	1	80-120/14	
71-55-6	1,1,1-Trichloroethane	1.0 U	25	30.9	124	25	30.2	121	2	75-130/16	
79-00-5	1,1,2-Trichloroethane	1.0 U	25	25.5	102	25	25.8	103	1	76-119/14	
79-01-6	Trichloroethylene	6.4		36.0	118	25	36.2	119	1	81-126/15	
75-01-4	Vinyl Chloride	2.3		31.0	115	25	29.4	108	5	69-159/18	
1330-20-7	Xylene (total)	3.0 U		75	79.9	107	75	78.7	105	2	80-126/15

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 2

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29677-3MS	P37673.D	1	12/10/15	KM	n/a	n/a	VP1395
FA29677-3MSD	P37674.D	1	12/10/15	KM	n/a	n/a	VP1395
FA29677-3	P37662.D	1	12/10/15	KM	n/a	n/a	VP1395

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-2, FA29765-3, FA29765-5

CAS No.	Surrogate Recoveries	MS	MSD	FA29677-3	Limits
1868-53-7	Dibromofluoromethane	106%	105%	103%	83-118%
17060-07-0	1,2-Dichloroethane-D4	109%	107%	104%	79-125%
2037-26-5	Toluene-D8	96%	96%	97%	85-112%
460-00-4	4-Bromofluorobenzene	102%	102%	104%	83-118%

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 1

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA29765-6MS	N0091118.D	10	12/22/15	RB	n/a	n/a	VN4102
FA29765-6MSD	N0091119.D	10	12/22/15	RB	n/a	n/a	VN4102
FA29765-6	N0091109.D	10	12/22/15	RB	12/09/15	OP58627	VN4102

The QC reported here applies to the following samples:

Method: SW846 8260B

FA29765-6

CAS No.	Compound	FA29765-6		Spike	MS	MS	Spike	MSD	MSD	RPD	Limits Rec/RPD
		ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%		
71-43-2	Benzene	ND	250	299	120	250	271	108	10	81-122/14	
78-93-3	2-Butanone (MEK)	ND	1250	1240	99	1250	1230	98	1	56-143/18	
56-23-5	Carbon Tetrachloride	ND	250	271	108	250	237	95	13	76-136/23	
108-90-7	Chlorobenzene	ND	250	302	121	250	281	112	7	82-124/14	
67-66-3	Chloroform	ND	250	290	116	250	267	107	8	80-124/15	
106-46-7	1,4-Dichlorobenzene	ND	250	295	118	250	279	112	6	78-120/15	
107-06-2	1,2-Dichloroethane	ND	250	305	122	250	290	116	5	75-125/14	
75-35-4	1,1-Dichloroethylene	ND	250	365	146*	250	313	125	15	78-137/18	
127-18-4	Tetrachloroethylene	ND	250	292	117	250	264	106	10	76-135/16	
79-01-6	Trichloroethylene	ND	250	302	121	250	267	107	12	81-126/15	
75-01-4	Vinyl Chloride	ND	250	269	108	250	234	94	14	69-159/18	

CAS No.	Surrogate Recoveries	MS	MSD	FA29765-6	Limits
1868-53-7	Dibromofluoromethane	98%	100%	99%	83-118%
17060-07-0	1,2-Dichloroethane-D4	104%	104%	106%	79-125%
2037-26-5	Toluene-D8	97%	97%	99%	85-112%
460-00-4	4-Bromofluorobenzene	91%	95%	100%	83-118%

* = Outside of Control Limits.

6.4.3
6

Southeast

LABORATORIES

GC/MS Semi-volatiles

QC Data Summaries

7

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Page 1 of 3

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58654-MB	U053439.D	1	12/14/15	MV	12/11/15	OP58654	SU2416

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-5

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	50	10	ug/l	
59-50-7	4-Chloro-3-methyl Phenol	ND	5.0	0.50	ug/l	
95-57-8	2-Chlorophenol	ND	5.0	0.50	ug/l	
120-83-2	2,4-Dichlorophenol	ND	5.0	0.50	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	0.50	ug/l	
51-28-5	2,4-Dinitrophenol	ND	25	5.0	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	10	2.1	ug/l	
95-48-7	2-Methylphenol	ND	5.0	0.50	ug/l	
	3&4-Methylphenol	ND	5.0	1.0	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.88	ug/l	
100-02-7	4-Nitrophenol	ND	25	5.0	ug/l	
87-86-5	Pentachlorophenol	ND	25	5.0	ug/l	
108-95-2	Phenol	ND	5.0	0.50	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	0.68	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.63	ug/l	
83-32-9	Acenaphthene	ND	5.0	0.50	ug/l	
208-96-8	Acenaphthylene	ND	5.0	0.50	ug/l	
120-12-7	Anthracene	ND	5.0	0.50	ug/l	
56-55-3	Benzo(a)anthracene	ND	5.0	0.50	ug/l	
50-32-8	Benzo(a)pyrene	ND	5.0	0.50	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	5.0	0.58	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	5.0	0.66	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	5.0	0.68	ug/l	
100-51-6	Benzyl Alcohol	ND	5.0	0.85	ug/l	
101-55-3	4-Bromophenyl Phenyl Ether	ND	5.0	0.64	ug/l	
85-68-7	Butyl Benzyl Phthalate	ND	5.0	1.0	ug/l	
86-74-8	Carbazole	ND	5.0	0.50	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.50	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	5.0	0.63	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	5.0	0.69	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	5.0	0.50	ug/l	
91-58-7	2-Chloronaphthalene	ND	5.0	0.50	ug/l	
7005-72-3	4-Chlorophenyl Phenyl Ether	ND	5.0	0.57	ug/l	
218-01-9	Chrysene	ND	5.0	0.51	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	5.0	0.68	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.50	ug/l	

Method Blank Summary

Page 2 of 3

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58654-MB	U053439.D	1	12/14/15	MV	12/11/15	OP58654	SU2416

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-5

CAS No.	Compound	Result	RL	MDL	Units	Q
95-50-1	1,2-Dichlorobenzene	ND	5.0	0.50	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	5.0	0.63	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	5.0	0.65	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	5.0	0.52	ug/l	
84-66-2	Diethyl Phthalate	ND	5.0	1.4	ug/l	
131-11-3	Dimethyl Phthalate	ND	5.0	1.0	ug/l	
84-74-2	Di-n-butyl Phthalate	ND	5.0	1.0	ug/l	
117-84-0	Di-n-octyl Phthalate	ND	5.0	1.0	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	5.0	0.58	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	5.0	0.69	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	5.0	1.0	ug/l	
206-44-0	Fluoranthene	ND	5.0	0.50	ug/l	
86-73-7	Fluorene	ND	5.0	0.50	ug/l	
118-74-1	Hexachlorobenzene	ND	5.0	0.63	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.60	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	5.0	1.0	ug/l	
67-72-1	Hexachloroethane	ND	5.0	0.68	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	5.0	0.63	ug/l	
78-59-1	Isophorone	ND	5.0	0.51	ug/l	
91-57-6	2-Methylnaphthalene	ND	5.0	0.50	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.50	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.53	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.99	ug/l	
98-95-3	Nitrobenzene	ND	5.0	0.52	ug/l	
621-64-7	N-Nitrosodi-n-propylamine	ND	5.0	0.58	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.59	ug/l	
85-01-8	Phenanthrene	ND	5.0	0.51	ug/l	
129-00-0	Pyrene	ND	5.0	0.55	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.50	ug/l	

CAS No.	Surrogate Recoveries	Limits	
367-12-4	2-Fluorophenol	44%	14-67%
4165-62-2	Phenol-d5	30%	10-50%

Method Blank Summary

Page 3 of 3

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58654-MB	U053439.D	1	12/14/15	MV	12/11/15	OP58654	SU2416

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-5

CAS No.	Surrogate Recoveries	Limits	
118-79-6	2,4,6-Tribromophenol	61%	33-118%
4165-60-0	Nitrobenzene-d5	64%	42-108%
321-60-8	2-Fluorobiphenyl	62%	40-106%
1718-51-0	Terphenyl-d14	83%	39-121%

Leachate Blank Summary

Page 1 of 1

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58696-LB	X043944.D	1	12/15/15	MV	12/15/15	OP58696	SX1976

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-6

CAS No.	Compound	Result	RL	MDL	Units	Q
95-48-7	2-Methylphenol	ND	50	5.0	ug/l	
	3&4-Methylphenol	ND	50	10	ug/l	
87-86-5	Pentachlorophenol	ND	250	50	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	50	6.8	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	50	6.3	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	50	6.5	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	50	5.8	ug/l	
118-74-1	Hexachlorobenzene	ND	50	6.3	ug/l	
87-68-3	Hexachlorobutadiene	ND	50	6.0	ug/l	
67-72-1	Hexachloroethane	ND	50	6.8	ug/l	
98-95-3	Nitrobenzene	ND	50	5.2	ug/l	
110-86-1	Pyridine	ND	100	20	ug/l	

CAS No.	Surrogate Recoveries	Limits
367-12-4	2-Fluorophenol	43% 14-67%
4165-62-2	Phenol-d5	29% 10-50%
118-79-6	2,4,6-Tribromophenol	80% 33-118%
4165-60-0	Nitrobenzene-d5	73% 42-108%
321-60-8	2-Fluorobiphenyl	73% 40-106%
1718-51-0	Terphenyl-d14	100% 39-121%

Blank Spike Summary

Page 1 of 3

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58654-BS	U053438.D	1	12/14/15	MV	12/11/15	OP58654	SU2416

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
65-85-0	Benzoic Acid	100	17.9	18	10-69
59-50-7	4-Chloro-3-methyl Phenol	50	34.6	69	54-103
95-57-8	2-Chlorophenol	50	31.9	64	52-98
120-83-2	2,4-Dichlorophenol	50	37.0	74	53-103
105-67-9	2,4-Dimethylphenol	50	31.5	63	43-90
51-28-5	2,4-Dinitrophenol	100	67.5	68	44-112
534-52-1	4,6-Dinitro-o-cresol	100	78.4	78	66-121
95-48-7	2-Methylphenol	50	25.9	52	43-90
	3&4-Methylphenol	100	51.2	51	36-88
88-75-5	2-Nitrophenol	50	35.0	70	53-102
100-02-7	4-Nitrophenol	100	33.1	33	18-62
87-86-5	Pentachlorophenol	100	83.0	83	61-115
108-95-2	Phenol	50	15.3	31	19-56
95-95-4	2,4,5-Trichlorophenol	50	39.3	79	62-109
88-06-2	2,4,6-Trichlorophenol	50	38.8	78	59-107
83-32-9	Acenaphthene	50	44.3	89	61-107
208-96-8	Acenaphthylene	50	38.7	77	60-104
120-12-7	Anthracene	50	44.6	89	65-108
56-55-3	Benzo(a)anthracene	50	46.7	93	66-111
50-32-8	Benzo(a)pyrene	50	44.4	89	62-107
205-99-2	Benzo(b)fluoranthene	50	45.2	90	65-114
191-24-2	Benzo(g,h,i)perylene	50	47.9	96	66-116
207-08-9	Benzo(k)fluoranthene	50	45.9	92	65-114
100-51-6	Benzyl Alcohol	50	26.1	52	46-94
101-55-3	4-Bromophenyl Phenyl Ether	50	40.3	81	65-109
85-68-7	Butyl Benzyl Phthalate	50	41.6	83	65-112
86-74-8	Carbazole	50	38.4	77	59-113
106-47-8	4-Chloroaniline	50	34.6	69	49-105
111-91-1	bis(2-Chloroethoxy)methane	50	36.6	73	51-102
111-44-4	bis(2-Chloroethyl)ether	50	33.6	67	53-100
108-60-1	bis(2-Chloroisopropyl)ether	50	38.5	77	45-106
91-58-7	2-Chloronaphthalene	50	39.0	78	57-103
7005-72-3	4-Chlorophenyl Phenyl Ether	50	36.0	72	62-105
218-01-9	Chrysene	50	48.8	98	66-111
53-70-3	Dibenzo(a,h)anthracene	50	45.4	91	66-119
132-64-9	Dibenzofuran	50	37.9	76	61-106

* = Outside of Control Limits.

7.3.1
7

Blank Spike Summary

Page 2 of 3

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58654-BS	U053438.D	1	12/14/15	MV	12/11/15	OP58654	SU2416

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
95-50-1	1,2-Dichlorobenzene	50	32.8	66	48-97
541-73-1	1,3-Dichlorobenzene	50	33.0	66	45-95
106-46-7	1,4-Dichlorobenzene	50	33.3	67	45-98
91-94-1	3,3'-Dichlorobenzidine	50	38.6	77	46-117
84-66-2	Diethyl Phthalate	50	37.0	74	64-108
131-11-3	Dimethyl Phthalate	50	36.6	73	63-106
84-74-2	Di-n-butyl Phthalate	50	38.8	78	65-107
117-84-0	Di-n-octyl Phthalate	50	38.7	77	62-118
121-14-2	2,4-Dinitrotoluene	50	37.4	75	61-110
606-20-2	2,6-Dinitrotoluene	50	34.6	69	63-108
117-81-7	bis(2-Ethylhexyl)phthalate	50	41.7	83	61-117
206-44-0	Fluoranthene	50	36.9	74	63-106
86-73-7	Fluorene	50	42.8	86	62-108
118-74-1	Hexachlorobenzene	50	36.6	73	63-108
87-68-3	Hexachlorobutadiene	50	38.2	76	42-102
77-47-4	Hexachlorocyclopentadiene	50	39.9	80	39-102
67-72-1	Hexachloroethane	50	33.3	67	42-100
193-39-5	Indeno(1,2,3-cd)pyrene	50	47.7	95	64-119
78-59-1	Isophorone	50	35.5	71	43-87
91-57-6	2-Methylnaphthalene	50	35.5	71	51-102
91-20-3	Naphthalene	50	37.8	76	47-100
88-74-4	2-Nitroaniline	50	51.0	102	54-128
99-09-2	3-Nitroaniline	50	32.6	65	56-106
100-01-6	4-Nitroaniline	50	35.5	71	55-120
98-95-3	Nitrobenzene	50	38.2	76	50-104
621-64-7	N-Nitrosodi-n-propylamine	50	35.1	70	52-104
86-30-6	N-Nitrosodiphenylamine	50	40.0	80	64-108
85-01-8	Phenanthrene	50	44.2	88	66-110
129-00-0	Pyrene	50	49.8	100	64-113
120-82-1	1,2,4-Trichlorobenzene	50	36.1	72	45-97

CAS No.	Surrogate Recoveries	BSP	Limits
367-12-4	2-Fluorophenol	41%	14-67%
4165-62-2	Phenol-d5	25%	10-50%

* = Outside of Control Limits.

7.3.1
7

Blank Spike Summary

Page 3 of 3

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58654-BS	U053438.D	1	12/14/15	MV	12/11/15	OP58654	SU2416

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-5

7.3.1
7

CAS No.	Surrogate Recoveries	BSP	Limits
118-79-6	2,4,6-Tribromophenol	77%	33-118%
4165-60-0	Nitrobenzene-d5	73%	42-108%
321-60-8	2-Fluorobiphenyl	75%	40-106%
1718-51-0	Terphenyl-d14	90%	39-121%

* = Outside of Control Limits.

Blank Spike Summary

Page 1 of 1

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58696-LBS	X043943.D	1	12/15/15	MV	12/15/15	OP58696	SX1976

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
95-48-7	2-Methylphenol	500	324	65	43-90
	3&4-Methylphenol	1000	598	60	36-88
87-86-5	Pentachlorophenol	1000	861	86	61-115
95-95-4	2,4,5-Trichlorophenol	500	440	88	62-109
88-06-2	2,4,6-Trichlorophenol	500	420	84	59-107
106-46-7	1,4-Dichlorobenzene	500	356	71	45-98
121-14-2	2,4-Dinitrotoluene	500	427	85	61-110
118-74-1	Hexachlorobenzene	500	409	82	63-108
87-68-3	Hexachlorobutadiene	500	386	77	42-102
67-72-1	Hexachloroethane	500	352	70	42-100
98-95-3	Nitrobenzene	500	403	81	50-104
110-86-1	Pyridine	500	147	29	23-74

CAS No.	Surrogate Recoveries	BSP	Limits
367-12-4	2-Fluorophenol	45%	14-67%
4165-62-2	Phenol-d5	30%	10-50%
118-79-6	2,4,6-Tribromophenol	82%	33-118%
4165-60-0	Nitrobenzene-d5	78%	42-108%
321-60-8	2-Fluorobiphenyl	78%	40-106%
1718-51-0	Terphenyl-d14	88%	39-121%

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 3

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58654-MS	U053446.D	1	12/14/15	MV	12/11/15	OP58654	SU2416
OP58654-MSD	U053447.D	1	12/14/15	MV	12/11/15	OP58654	SU2416
FA29841-3	U053445.D	1	12/14/15	MV	12/11/15	OP58654	SU2416

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-5

CAS No.	Compound	FA29841-3		Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		ug/l	Q								
65-85-0	Benzoic Acid	48 U	192	118	61	192	92.8	48	24	10-69/39	
59-50-7	4-Chloro-3-methyl Phenol	4.8 U	96.2	84.7	88	96.2	68.8	72	21	54-103/23	
95-57-8	2-Chlorophenol	4.8 U	96.2	75.2	78	96.2	58.6	61	25	52-98/25	
120-83-2	2,4-Dichlorophenol	4.8 U	96.2	85.6	89	96.2	63.3	66	30*	53-103/26	
105-67-9	2,4-Dimethylphenol	4.8 U	96.2	78.2	81	96.2	60.0	62	26	43-90/27	
51-28-5	2,4-Dinitrophenol	24 U	192	159	83	192	144	75	10	44-112/25	
534-52-1	4,6-Dinitro-o-cresol	9.5 U	192	181	94	192	153	80	17	66-121/23	
95-48-7	2-Methylphenol	4.8 U	96.2	72.2	75	96.2	55.5	58	26	43-90/28	
	3&4-Methylphenol	4.8 U	192	149	77	192	116	60	25	36-88/28	
88-75-5	2-Nitrophenol	4.8 U	96.2	82.6	86	96.2	61.8	64	29	53-102/29	
100-02-7	4-Nitrophenol	24 U	192	128	67*	192	106	55	19	18-62/33	
87-86-5	Pentachlorophenol	24 U	192	184	96	192	158	82	15	61-115/26	
108-95-2	Phenol	4.8 U	96.2	57.8	60*	96.2	42.1	44	31	19-56/35	
95-95-4	2,4,5-Trichlorophenol	4.8 U	96.2	89.3	93	96.2	69.9	73	24*	62-109/22	
88-06-2	2,4,6-Trichlorophenol	4.8 U	96.2	87.8	91	96.2	67.9	71	26*	59-107/23	
83-32-9	Acenaphthene	4.8 U	96.2	99.2	103	96.2	78.4	82	23*	61-107/22	
208-96-8	Acenaphthylene	4.8 U	96.2	87.4	91	96.2	69.9	73	22	60-104/22	
120-12-7	Anthracene	4.8 U	96.2	100	104	96.2	82.0	85	20	65-108/20	
56-55-3	Benzo(a)anthracene	4.8 U	96.2	103	107	96.2	84.8	88	19	66-111/22	
50-32-8	Benzo(a)pyrene	4.8 U	96.2	101	105	96.2	82.2	85	21	62-107/23	
205-99-2	Benzo(b)fluoranthene	4.8 U	96.2	102	106	96.2	85.3	89	18	65-114/23	
191-24-2	Benzo(g,h,i)perylene	4.8 U	96.2	111	115	96.2	90.0	94	21	66-116/23	
207-08-9	Benzo(k)fluoranthene	4.8 U	96.2	102	106	96.2	85.2	89	18	65-114/24	
100-51-6	Benzyl Alcohol	4.8 U	96.2	75.5	79	96.2	57.0	59	28*	46-94/27	
101-55-3	4-Bromophenyl Phenyl Ether	4.8 U	96.2	91.8	95	96.2	73.5	76	22	65-109/23	
85-68-7	Butyl Benzyl Phthalate	4.8 U	96.2	94.2	98	96.2	74.6	78	23	65-112/24	
86-74-8	Carbazole	4.8 U	96.2	87.8	91	96.2	73.0	76	18	59-113/21	
106-47-8	4-Chloroaniline	4.8 U	96.2	62.8	65	96.2	53.5	56	16	49-105/27	
111-91-1	bis(2-Chloroethoxy)methane	4.8 U	96.2	85.6	89	96.2	63.9	66	29*	51-102/28	
111-44-4	bis(2-Chloroethyl)ether	4.8 U	96.2	77.4	80	96.2	60.1	63	25	53-100/27	
108-60-1	bis(2-Chloroisopropyl)ether	4.8 U	96.2	91.3	95	96.2	70.9	74	25	45-106/26	
91-58-7	2-Chloronaphthalene	4.8 U	96.2	87.9	91	96.2	66.2	69	28*	57-103/23	
7005-72-3	4-Chlorophenyl Phenyl Ether	4.8 U	96.2	83.6	87	96.2	66.1	69	23*	62-105/20	
218-01-9	Chrysene	4.8 U	96.2	109	113*	96.2	89.0	93	20	66-111/22	
53-70-3	Dibenzo(a,h)anthracene	4.8 U	96.2	109	113	96.2	86.0	89	24	66-119/24	
132-64-9	Dibenzofuran	4.8 U	96.2	88.9	92	96.2	70.1	73	24*	61-106/21	

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 2 of 3

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58654-MS	U053446.D	1	12/14/15	MV	12/11/15	OP58654	SU2416
OP58654-MSD	U053447.D	1	12/14/15	MV	12/11/15	OP58654	SU2416
FA29841-3	U053445.D	1	12/14/15	MV	12/11/15	OP58654	SU2416

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-5

CAS No.	Compound	FA29841-3		Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		ug/l	Q								
95-50-1	1,2-Dichlorobenzene	4.8	U	96.2	76.7	80	96.2	60.7	63	23	48-97/24
541-73-1	1,3-Dichlorobenzene	4.8	U	96.2	77.4	80	96.2	59.8	62	26*	45-95/25
106-46-7	1,4-Dichlorobenzene	4.8	U	96.2	79.4	83	96.2	61.0	63	26*	45-98/25
91-94-1	3,3'-Dichlorobenzidine	4.8	U	96.2	43.7	45*	96.2	35.3	37*	21	46-117/29
84-66-2	Diethyl Phthalate	4.8	U	96.2	86.0	89	96.2	70.2	73	20	64-108/21
131-11-3	Dimethyl Phthalate	4.8	U	96.2	84.7	88	96.2	67.3	70	23*	63-106/22
84-74-2	Di-n-butyl Phthalate	4.8	U	96.2	89.9	93	96.2	73.0	76	21	65-107/21
117-84-0	Di-n-octyl Phthalate	4.8	U	96.2	87.9	91	96.2	71.2	74	21	62-118/24
121-14-2	2,4-Dinitrotoluene	4.8	U	96.2	88.4	92	96.2	70.9	74	22*	61-110/21
606-20-2	2,6-Dinitrotoluene	4.8	U	96.2	84.0	87	96.2	70.2	73	18	63-108/21
117-81-7	bis(2-Ethylhexyl)phthalate	4.8	U	96.2	93.6	97	96.2	76.3	79	20	61-117/23
206-44-0	Fluoranthene	4.8	U	96.2	84.8	88	96.2	71.5	74	17	63-106/21
86-73-7	Fluorene	4.8	U	96.2	98.7	103	96.2	79.9	83	21*	62-108/20
118-74-1	Hexachlorobenzene	4.8	U	96.2	85.1	89	96.2	68.1	71	22	63-108/22
87-68-3	Hexachlorobutadiene	4.8	U	96.2	87.7	91	96.2	63.9	66	31*	42-102/28
77-47-4	Hexachlorocyclopentadiene	4.8	U	96.2	79.7	83	96.2	54.5	57	38*	39-102/29
67-72-1	Hexachloroethane	4.8	U	96.2	79.3	82	96.2	60.7	63	27	42-100/29
193-39-5	Indeno(1,2,3-cd)pyrene	4.8	U	96.2	108	112	96.2	90.6	94	18	64-119/24
78-59-1	Isophorone	4.8	U	96.2	84.1	87	96.2	64.3	67	27*	43-87/25
91-57-6	2-Methylnaphthalene	4.8	U	96.2	84.3	88	96.2	63.8	66	28*	51-102/26
91-20-3	Naphthalene	4.8	U	96.2	86.8	90	96.2	66.1	69	27	47-100/29
88-74-4	2-Nitroaniline	4.8	U	96.2	94.0	98	96.2	79.0	82	17	54-128/24
99-09-2	3-Nitroaniline	4.8	U	96.2	59.2	62	96.2	52.8	55*	11	56-106/27
100-01-6	4-Nitroaniline	4.8	U	96.2	76.5	80	96.2	68.4	71	11	55-120/24
98-95-3	Nitrobenzene	4.8	U	96.2	84.7	88	96.2	66.5	69	24	50-104/28
621-64-7	N-Nitrosodi-n-propylamine	4.8	U	96.2	85.2	89	96.2	69.1	72	21	52-104/25
86-30-6	N-Nitrosodiphenylamine	4.8	U	96.2	90.3	94	96.2	72.4	75	22	64-108/23
85-01-8	Phenanthrene	4.8	U	96.2	100	104	96.2	82.6	86	19	66-110/21
129-00-0	Pyrene	4.8	U	96.2	106	110	96.2	87.4	91	19	64-113/23
120-82-1	1,2,4-Trichlorobenzene	4.8	U	96.2	83.5	87	96.2	61.4	64	31*	45-97/28

CAS No.	Surrogate Recoveries	MS	MSD	FA29841-3	Limits
367-12-4	2-Fluorophenol	67%	49%	37%	14-67%
4165-62-2	Phenol-d5	52% * a	37%	23%	10-50%

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 3 of 3

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58654-MS	U053446.D	1	12/14/15	MV	12/11/15	OP58654	SU2416
OP58654-MSD	U053447.D	1	12/14/15	MV	12/11/15	OP58654	SU2416
FA29841-3	U053445.D	1	12/14/15	MV	12/11/15	OP58654	SU2416

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-5

CAS No.	Surrogate Recoveries	MS	MSD	FA29841-3	Limits
118-79-6	2,4,6-Tribromophenol	93%	71%	79%	33-118%
4165-60-0	Nitrobenzene-d5	85%	66%		42-108%
321-60-8	2-Fluorobiphenyl	86%	66%		40-106%
1718-51-0	Terphenyl-d14	102%	83%		39-121%

(a) Outside control limits. Sample was ND.

* = Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 1

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58696-MS	X043946.D	1	12/15/15	MV	12/15/15	OP58696	SX1976
OP58696-MSD	X043947.D	1	12/15/15	MV	12/15/15	OP58696	SX1976
FA29695-1	X043945.D	1	12/15/15	MV	12/15/15	OP58696	SX1976

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-6

CAS No.	Compound	FA29695-1		Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
		ug/l	Q								
95-48-7	2-Methylphenol	ND	500	278	56	500	309	62	11	43-90/28	
	3&4-Methylphenol	ND	1000	501	50	1000	559	56	11	36-88/28	
87-86-5	Pentachlorophenol	ND	1000	764	76	1000	853	85	11	61-115/26	
95-95-4	2,4,5-Trichlorophenol	ND	500	386	77	500	440	88	13	62-109/22	
88-06-2	2,4,6-Trichlorophenol	ND	500	371	74	500	420	84	12	59-107/23	
106-46-7	1,4-Dichlorobenzene	ND	500	309	62	500	317	63	3	45-98/25	
121-14-2	2,4-Dinitrotoluene	ND	500	388	78	500	432	86	11	61-110/21	
118-74-1	Hexachlorobenzene	ND	500	372	74	500	408	82	9	63-108/22	
87-68-3	Hexachlorobutadiene	ND	500	340	68	500	355	71	4	42-102/28	
67-72-1	Hexachloroethane	ND	500	304	61	500	306	61	1	42-100/29	
98-95-3	Nitrobenzene	ND	500	364	73	500	381	76	5	50-104/28	
110-86-1	Pyridine	ND	500	185	37	500	135	27	31	23-74/34	

CAS No.	Surrogate Recoveries	MS	MSD	FA29695-1	Limits
367-12-4	2-Fluorophenol	37%	39%	38%	14-67%
4165-62-2	Phenol-d5	26%	28%	26%	10-50%
118-79-6	2,4,6-Tribromophenol	73%	82%	69%	33-118%
4165-60-0	Nitrobenzene-d5	70%	73%	67%	42-108%
321-60-8	2-Fluorobiphenyl	71%	78%	65%	40-106%
1718-51-0	Terphenyl-d14	81%	87%	90%	39-121%

* = Outside of Control Limits.

Leachate Spike Summary

Page 1 of 1

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58696-LS	X043975.D	1	12/16/15	MV	12/15/15	OP58696	SX1976
FA29902-6	X043974.D	1	12/16/15	MV	12/15/15	OP58696	SX1976

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-6

CAS No.	Compound	FA29902-6		Spike ug/l	LS ug/l	LS %	Limits
		ug/l	Q				
95-48-7	2-Methylphenol	50	U	500	310	62	43-90
	3&4-Methylphenol	50	U	1000	562	56	36-88
87-86-5	Pentachlorophenol	250	U	1000	767	77	61-115
95-95-4	2,4,5-Trichlorophenol	50	U	500	384	77	62-109
88-06-2	2,4,6-Trichlorophenol	50	U	500	373	75	59-107
106-46-7	1,4-Dichlorobenzene	50	U	500	340	68	45-98
121-14-2	2,4-Dinitrotoluene	50	U	500	389	78	61-110
118-74-1	Hexachlorobenzene	50	U	500	367	73	63-108
87-68-3	Hexachlorobutadiene	50	U	500	340	68	42-102
67-72-1	Hexachloroethane	50	U	500	338	68	42-100
98-95-3	Nitrobenzene	50	U	500	383	77	50-104
110-86-1	Pyridine	100	U	500	188	38	23-74

CAS No.	Surrogate Recoveries	LS	FA29902-6	Limits
367-12-4	2-Fluorophenol	42%	38%	14-67%
4165-62-2	Phenol-d5	30%	27%	10-50%
118-79-6	2,4,6-Tribromophenol	73%	76%	33-118%
4165-60-0	Nitrobenzene-d5	72%	66%	42-108%
321-60-8	2-Fluorobiphenyl	72%	67%	40-106%
1718-51-0	Terphenyl-d14	79%	89%	39-121%

* = Outside of Control Limits.

Duplicate Summary

Page 1 of 1

Job Number: FA29765

Account: UTC United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP58696-DUP	X043951.D	1	12/16/15	MV	12/15/15	OP58696	SX1976
FA29765-6	X043950.D	1	12/16/15	MV	12/15/15	OP58696	SX1976

The QC reported here applies to the following samples:

Method: SW846 8270D

FA29765-6

CAS No.	Compound	FA29765-6		Q	RPD	Limits
		DUP ug/l	ug/l			
95-48-7	2-Methylphenol	ND	ND	nc	28	
	3&4-Methylphenol	ND	ND	nc	28	
87-86-5	Pentachlorophenol	ND	ND	nc	26	
95-95-4	2,4,5-Trichlorophenol	ND	ND	nc	22	
88-06-2	2,4,6-Trichlorophenol	ND	ND	nc	23	
106-46-7	1,4-Dichlorobenzene	ND	ND	nc	25	
121-14-2	2,4-Dinitrotoluene	ND	ND	nc	21	
118-74-1	Hexachlorobenzene	ND	ND	nc	22	
87-68-3	Hexachlorobutadiene	ND	ND	nc	28	
67-72-1	Hexachloroethane	ND	ND	nc	29	
98-95-3	Nitrobenzene	ND	ND	nc	28	
110-86-1	Pyridine	ND	ND	nc	34	

CAS No.	Surrogate Recoveries	DUP	FA29765-6		Limits
			41%	44%	
367-12-4	2-Fluorophenol	30%	29%	14-67%	
4165-62-2	Phenol-d5	73%	79%	10-50%	
118-79-6	2,4,6-Tribromophenol	71%	78%	33-118%	
4165-60-0	Nitrobenzene-d5	67%	74%	42-108%	
321-60-8	2-Fluorobiphenyl	94%	101%	40-106%	
1718-51-0	Terphenyl-d14			39-121%	

* = Outside of Control Limits.

Southeast

ACCUTEST[®]

LABORATORIES

Metals Analysis

QC Data Summaries

88

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY
Part 2 - Method Blanks

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29747
Matrix Type: AQUEOUS

Methods: SW846 7470A
Units: ug/l

Prep Date: 12/09/15

Metal	RL	IDL	MDL	MB raw	final
Mercury	0.50	.03	.03	-0.033	<0.50

Associated samples MP29747: FA29765-5

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29747
Matrix Type: AQUEOUSMethods: SW846 7470A
Units: ug/l

Prep Date:

12/09/15

12/09/15

Metal	FA29760-17F Original DUP	RPD	QC Limits	FA29760-17F Original MS	Spikelot HGFLWS1	% Rec	QC Limits
Mercury	0.0	0.0	NC	0-20	0.0	2.5	3 83.3 80-120

Associated samples MP29747: FA29765-5

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29747
Matrix Type: AQUEOUSMethods: SW846 7470A
Units: ug/l

Prep Date:

12/09/15

Metal	FA29760-17F Original	Spikelot HGFLWS1	MSD % Rec	MSD RPD	QC Limit
Mercury	0.0	2.5	3	83.3	0.0 20

Associated samples MP29747: FA29765-5

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29747
Matrix Type: AQUEOUS

Methods: SW846 7470A
Units: ug/l

Prep Date:

12/09/15

Metal	BSP Result	Spikelot HGFLWS1	QC % Rec	QC Limits
Mercury	3.0	3	100.0	80-120

Associated samples MP29747: FA29765-5

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29747
Matrix Type: AQUEOUS

Methods: SW846 7470A
Units: ug/l

Prep Date:

12/09/15

Metal	FA29760-17F	Original	SDL 1:5	%DIF	QC	Limits
Mercury	0.00	0.00	NC		0-10	

Associated samples MP29747: FA29765-5

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

8.1.4
8

BLANK RESULTS SUMMARY
Part 2 - Method Blanks

Login Number: FA29765
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29758
Matrix Type: LEACHATE

Methods: SW846 7470A
Units: mg/l

Prep Date:

12/11/15

12/11/15

12/11/15

Metal	RL	IDL	MDL	MB raw	MB final	MB raw	MB final	MB raw	MB final
Mercury	0.00050	.00003	.00005	0.000029 <0.00050	-0.000043<0.0050	-0.00010	<0.0050		

Associated samples MP29758: FA29765-6

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

BLANK RESULTS SUMMARY
Part 2 - Method Blanks

Login Number: FA29765
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29758
Matrix Type: LEACHATE

Methods: SW846 7470A
Units: mg/l

Prep Date: 12/11/15

Metal	RL	IDL	MDL	MB raw	final
Mercury	0.00050	.00003	.00005	0.000045	<0.0050

Associated samples MP29758: FA29765-6

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

8.2.1
8

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29758
Matrix Type: LEACHATE

Methods: SW846 7470A
Units: mg/l

Prep Date:

12/11/15

Metal	FA29696-1 Original MS	Spikelot HGFLWS1	QC % Rec	QC Limits
Mercury	0.0	0.030	0.030	100.0 80-120

Associated samples MP29758: FA29765-6

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29758
Matrix Type: LEACHATEMethods: SW846 7470A
Units: mg/l

Prep Date:

12/11/15

12/11/15

Metal	FA29696-1 Original MSD	Spikelot HGFLWS1	MSD % Rec	QC RPD	FA29765-6 Original DUP	QC RPD	QC Limits
Mercury	0.0	0.030	0.030	100.0	0.0	20	0.0

Associated samples MP29758: FA29765-6

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29758
Matrix Type: LEACHATEMethods: SW846 7470A
Units: mg/l

Prep Date:

12/11/15

12/11/15

Metal	BSP Result	Spikelot HGFLWS1	QC % Rec	BSP Limits	Spikelot HGFLWS1	QC % Rec	Limits
Mercury	0.0030	0.0030	100.0	80-120	0.031	0.030	103.3

Associated samples MP29758: FA29765-6

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29758
Matrix Type: LEACHATEMethods: SW846 7470A
Units: mg/l

Prep Date:

12/11/15

12/11/15

Metal	BSP Result	Spikelot HGFLWS1	QC % Rec	BSP Limits	Spikelot HGFLWS1	QC % Rec	QC Limits
Mercury	0.030	0.030	100.0	80-120	0.029	0.030	96.7

Associated samples MP29758: FA29765-6

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29758
Matrix Type: LEACHATE

Methods: SW846 7470A
Units: ug/l

Prep Date:

12/11/15

Metal	FA29696-1 Original	SDL 1:5	%DIF	QC Limits
Mercury	0.00	0.00	NC	0-10

Associated samples MP29758: FA29765-6

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

BLANK RESULTS SUMMARY
Part 2 - Method Blanks

Login Number: FA29765
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29771
Matrix Type: LEACHATE

Methods: SW846 6010C
Units: mg/l

Prep Date:	12/15/15			12/15/15			12/15/15		
Metal	RL	IDL	MDL	MB raw	final	MB raw	final	MB raw	final
Aluminum	0.20	.014	.014						
Antimony	0.0060	.001	.001						
Arsenic	0.010	.0013	.0013	-0.0016	<0.010	-0.014	<0.10	-0.014	<0.10
Barium	0.20	.001	.005	-0.00030	<0.20	0.0010	<2.0	0.0030	<2.0
Beryllium	0.0040	.0002	.0002						
Cadmium	0.0050	.0002	.0002	-0.00010	<0.0050	-0.0010	<0.050	-0.0010	<0.050
Calcium	1.0	.05	.05						
Chromium	0.010	.001	.001	0.0	<0.010	-0.0020	<0.10	-0.0010	<0.10
Cobalt	0.050	.0002	.0002						
Copper	0.025	.001	.001						
Iron	0.30	.017	.017						
Lead	0.0050	.001	.0011	-0.00020	<0.0050	0.015	<0.050	0.0050	<0.050
Magnesium	5.0	.035	.035						
Manganese	0.015	.0005	.001						
Molybdenum	0.050	.0003	.0003						
Nickel	0.040	.0004	.0004						
Potassium	10	.2	.2						
Selenium	0.010	.0024	.0029	0.0014	<0.010	0.020	<0.10	0.025	<0.10
Silver	0.010	.0007	.0007	0.0	<0.010	-0.0010	<0.10	-0.0010	<0.10
Sodium	10	.5	.5						
Strontium	0.010	.0005	.0005						
Thallium	0.010	.0011	.0014						
Tin	0.050	.0009	.001						
Titanium	0.010	.0005	.001						
Vanadium	0.050	.0005	.0006						
Zinc	0.020	.003	.01						

Associated samples MP29771: FA29765-6

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

8.3.1
8

BLANK RESULTS SUMMARY
Part 2 - Method Blanks

Login Number: FA29765
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29771
Matrix Type: LEACHATE

Methods: SW846 6010C
Units: mg/l

Prep Date:

12/15/15

12/15/15

Metal	RL	IDL	MDL	MB raw	final	MB raw	final
Aluminum	0.20	.014	.014				
Antimony	0.0060	.001	.001				
Arsenic	0.010	.0013	.0013	-0.0090	<0.10	-0.0080	<0.10
Barium	0.20	.001	.005	0.0020	<2.0	0.0010	<2.0
Beryllium	0.0040	.0002	.0002				
Cadmium	0.0050	.0002	.0002	-0.0010	<0.050	-0.0010	<0.050
Calcium	1.0	.05	.05				
Chromium	0.010	.001	.001	-0.0010	<0.10	-0.0020	<0.10
Cobalt	0.050	.0002	.0002				
Copper	0.025	.001	.001				
Iron	0.30	.017	.017				
Lead	0.0050	.001	.0011	0.0030	<0.050	-0.0030	<0.050
Magnesium	5.0	.035	.035				
Manganese	0.015	.0005	.001				
Molybdenum	0.050	.0003	.0003				
Nickel	0.040	.0004	.0004				
Potassium	10	.2	.2				
Selenium	0.010	.0024	.0029	0.031	<0.10	0.024	<0.10
Silver	0.010	.0007	.0007	-0.0020	<0.10	-0.0010	<0.10
Sodium	10	.5	.5				
Strontium	0.010	.0005	.0005				
Thallium	0.010	.0011	.0014				
Tin	0.050	.0009	.001				
Titanium	0.010	.0005	.001				
Vanadium	0.050	.0005	.0006				
Zinc	0.020	.003	.01				

Associated samples MP29771: FA29765-6

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

8.3.1
8

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29771
Matrix Type: LEACHATEMethods: SW846 6010C
Units: mg/l

Prep Date:

12/15/15

Metal	FA29694-1 Original MS	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic	0.0	21.3	20.0	106.5 80-120
Barium	0.32	22.0	20.0	108.4 80-120
Beryllium				
Cadmium	0.0	0.54	0.50	108.0 80-120
Calcium				
Chromium	0.0	2.2	2.0	110.0 80-120
Cobalt				
Copper				
Iron				
Lead	0.021	5.2	5.0	103.6 80-120
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium	0.025	21.7	20.0	108.4 80-120
Silver	0.0	0.51	0.50	102.0 80-120
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP29771: FA29765-6

Results < IDL are shown as zero for calculation purposes
 (*) Outside of QC limits
 (N) Matrix Spike Rec. outside of QC limits
 (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29771
Matrix Type: LEACHATEMethods: SW846 6010C
Units: mg/l

Prep Date:

12/15/15

12/15/15

Metal	FA29694-1 Original MSD	Spikelot MPFLICP2	MSD % Rec	MSD RPD	QC Limit	FA29765-6 Original DUP	MSD RPD	QC Limits
Aluminum								
Antimony								
Arsenic	0.0	21.3	20.0	106.5	0.0	20	0.0	0-20
Barium	0.32	22.1	20.0	108.9	0.5	20	0.12	0-20
Beryllium								
Cadmium	0.0	0.54	0.50	108.0	0.0	20	0.0	0-20
Calcium								
Chromium	0.0	2.2	2.0	110.0	0.0	20	0.0	0-20
Cobalt								
Copper								
Iron								
Lead	0.021	5.2	5.0	103.6	0.0	20	0.0	0-20
Magnesium								
Manganese								
Molybdenum								
Nickel								
Potassium								
Selenium	0.025	21.8	20.0	108.9	0.5	20	0.027	0-20
Silver	0.0	0.51	0.50	102.0	0.0	20	0.0	0-20
Sodium								
Strontium								
Thallium								
Tin								
Titanium								
Vanadium								
Zinc								

Associated samples MP29771: FA29765-6

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

(a) RPD acceptable due to low duplicate and sample concentrations.

8.3.2

8

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29771
Matrix Type: LEACHATEMethods: SW846 6010C
Units: mg/l

Prep Date:

12/15/15

12/15/15

Metal	BSP Result	Spikelot MPFLICP2	QC Limits	BSP Result	Spikelot MPFLICP2	QC Limits
Aluminum						
Antimony						
Arsenic	2.1	2.0	105.0	80-120	21.4	20.0
Barium	2.2	2.0	110.0	80-120	21.7	20.0
Beryllium						
Cadmium	0.055	0.050	110.0	80-120	0.54	0.50
Calcium						
Chromium	0.22	0.20	110.0	80-120	2.2	2.0
Cobalt						
Copper						
Iron						
Lead	0.52	0.50	104.0	80-120	5.2	5.0
Magnesium						
Manganese						
Molybdenum						
Nickel						
Potassium						
Selenium	2.1	2.0	105.0	80-120	21.9	20.0
Silver	0.051	0.050	102.0	80-120	0.51	0.50
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						

Associated samples MP29771: FA29765-6

Results < IDL are shown as zero for calculation purposes
 (*) Outside of QC limits
 (anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation

Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29771
Matrix Type: LEACHATEMethods: SW846 6010C
Units: mg/l

Prep Date:

12/15/15

12/15/15

Metal	BSP Result	Spikelot MPFLICP2	QC Limits	BSP Result	Spikelot MPFLICP2	QC Limits
Aluminum						
Antimony						
Arsenic	21.1	20.0	105.5	80-120	20.9	20.0
Barium	21.5	20.0	107.5	80-120	21.9	20.0
Beryllium						
Cadmium	0.54	0.50	108.0	80-120	0.54	0.50
Calcium						
Chromium	2.2	2.0	110.0	80-120	2.2	2.0
Cobalt						
Copper						
Iron						
Lead	5.2	5.0	104.0	80-120	5.2	5.0
Magnesium						
Manganese						
Molybdenum						
Nickel						
Potassium						
Selenium	21.7	20.0	108.5	80-120	21.4	20.0
Silver	0.51	0.50	102.0	80-120	0.50	0.50
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						

Associated samples MP29771: FA29765-6

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

8.3.3

8

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29771
Matrix Type: LEACHATEMethods: SW846 6010C
Units: mg/l

Prep Date:

12/15/15

Metal	BSP Result	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic	20.8	20.0	104.0	80-120
Barium	21.8	20.0	109.0	80-120
Beryllium				
Cadmium	0.54	0.50	108.0	80-120
Calcium				
Chromium	2.2	2.0	110.0	80-120
Cobalt				
Copper				
Iron				
Lead	5.2	5.0	104.0	80-120
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium	21.1	20.0	105.5	80-120
Silver	0.51	0.50	102.0	80-120
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP29771: FA29765-6

Results < IDL are shown as zero for calculation purposes
 (*) Outside of QC limits
 (anr) Analyte not requested

8.3.3

8

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29771
Matrix Type: LEACHATEMethods: SW846 6010C
Units: ug/l

Prep Date:

12/15/15

Metal	FA29694-1 Original	SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic	0.00	0.00	NC	0-10
Barium	32.2	29.6	8.1	0-10
Beryllium				
Cadmium	0.00	0.00	NC	0-10
Calcium				
Chromium	0.00	0.00	NC	0-10
Cobalt				
Copper				
Iron				
Lead	2.10	0.00	100.0(a)	0-10
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium	2.50	0.00	100.0(a)	0-10
Silver	0.00	0.00	NC	0-10
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				

Associated samples MP29771: FA29765-6

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

8.3.4
8

BLANK RESULTS SUMMARY
Part 2 - Method Blanks

Login Number: FA29765
Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SC

QC Batch ID: MP29784
Matrix Type: AQUEOUS

Methods: SW846 6010C
Units: ug/l

Prep Date:

12/17/15

Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	14	14		
Antimony	6.0	1	1	-0.30	<6.0
Arsenic	10	1.3	1.3	-0.80	<10
Barium	200	1	1		
Beryllium	4.0	.2	.2	-0.30	<4.0
Cadmium	5.0	.2	.2	-0.20	<5.0
Calcium	1000	50	50		
Chromium	10	1	1	-0.30	<10
Cobalt	50	.2	.2		
Copper	25	1	1	-1.2	<25
Iron	300	17	17		
Lead	5.0	1	1.1	-0.30	<5.0
Magnesium	5000	35	35		
Manganese	15	.5	1		
Molybdenum	50	.3	.3		
Nickel	40	.4	.4	-0.40	<40
Potassium	10000	200	200		
Selenium	10	2.4	2.9	-0.50	<10
Silver	10	.7	.7	-0.50	<10
Sodium	10000	500	500		
Strontium	10	.5	.5		
Thallium	10	1.1	1.4	-1.6	<10
Tin	50	.9	1		
Titanium	10	.5	1		
Vanadium	50	.5	.6		
Zinc	20	3	4.4	-1.5	<20

Associated samples MP29784: FA29765-5

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29784
Matrix Type: AQUEOUSMethods: SW846 6010C
Units: ug/l

Prep Date:

12/17/15

12/17/15

Metal	FA30018-1 Original	FA30018-1 DUP	RPD	QC Limits	FA30018-1 Original	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum								
Antimony	1.5	0.0	200.0(a)	0-20	1.5	524	500	104.5
Arsenic	0.0	0.0	NC	0-20	0.0	2070	2000	103.5
Barium	anr							
Beryllium	0.0	0.0	NC	0-20	0.0	54.1	50	108.2
Cadmium	0.0	0.0	NC	0-20	0.0	52.0	50	104.0
Calcium	anr							
Chromium	0.0	0.0	NC	0-20	0.0	213	200	106.5
Cobalt								
Copper	0.0	0.0	NC	0-20	0.0	265	250	106.0
Iron	anr							
Lead	3.8	5.1	29.2 (a)	0-20	3.8	520	500	103.2
Magnesium	anr							
Manganese	anr							
Molybdenum								
Nickel	0.0	0.0	NC	0-20	0.0	523	500	104.6
Potassium								
Selenium	0.0	0.0	NC	0-20	0.0	1960	2000	98.0
Silver	0.0	0.0	NC	0-20	0.0	50.8	50	101.6
Sodium	anr							
Strontium								
Thallium	0.0	0.0	NC	0-20	0.0	2060	2000	103.0
Tin								
Titanium								
Vanadium								
Zinc	0.0	0.0	NC	0-20	0.0	521	500	104.2

Associated samples MP29784: FA29765-5

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

(a) RPD acceptable due to low duplicate and sample concentrations.

8.4.2
8

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29784
Matrix Type: AQUEOUSMethods: SW846 6010C
Units: ug/l

Prep Date:

12/17/15

Metal	FA30018-1 Original MSD	Spikelot MPFLICP2	MSD % Rec	MSD RPD	QC Limit
Aluminum					
Antimony	1.5	524	500	104.5	0.0
Arsenic	0.0	2060	2000	103.0	0.5
Barium	anr				
Beryllium	0.0	53.8	50	107.6	0.6
Cadmium	0.0	52.0	50	104.0	0.0
Calcium	anr				
Chromium	0.0	215	200	107.5	0.9
Cobalt					
Copper	0.0	266	250	106.4	0.4
Iron	anr				
Lead	3.8	522	500	103.6	0.4
Magnesium	anr				
Manganese	anr				
Molybdenum					
Nickel	0.0	522	500	104.4	0.2
Potassium					
Selenium	0.0	1960	2000	98.0	0.0
Silver	0.0	51.1	50	102.2	0.6
Sodium	anr				
Strontium					
Thallium	0.0	2070	2000	103.5	0.5
Tin					
Titanium					
Vanadium					
Zinc	0.0	520	500	104.0	0.2

Associated samples MP29784: FA29765-5

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29784
Matrix Type: AQUEOUSMethods: SW846 6010C
Units: ug/l

Prep Date:

12/17/15

Metal	BSP Result	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum				
Antimony	520	500	104.0	80-120
Arsenic	2020	2000	101.0	80-120
Barium	anr			
Beryllium	55.9	50	111.8	80-120
Cadmium	53.3	50	106.6	80-120
Calcium	anr			
Chromium	227	200	113.5	80-120
Cobalt				
Copper	273	250	109.2	80-120
Iron	anr			
Lead	522	500	104.4	80-120
Magnesium	anr			
Manganese	anr			
Molybdenum				
Nickel	529	500	105.8	80-120
Potassium				
Selenium	2050	2000	102.5	80-120
Silver	50.3	50	100.6	80-120
Sodium	anr			
Strontium				
Thallium	2100	2000	105.0	80-120
Tin				
Titanium				
Vanadium				
Zinc	533	500	106.6	80-120

Associated samples MP29784: FA29765-5

Results < IDL are shown as zero for calculation purposes
 (*) Outside of QC limits
 (anr) Analyte not requested

8.4.3
8

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29784
Matrix Type: AQUEOUSMethods: SW846 6010C
Units: ug/l

Prep Date:

12/17/15

Metal	FA30018-1 Original	SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony	1.50	0.00	100.0(a)	0-10
Arsenic	0.00	0.00	NC	0-10
Barium	anr			
Beryllium	0.00	0.00	NC	0-10
Cadmium	0.00	0.00	NC	0-10
Calcium	anr			
Chromium	0.00	0.00	NC	0-10
Cobalt				
Copper	0.00	0.00	NC	0-10
Iron	anr			
Lead	3.80	0.00	100.0(a)	0-10
Magnesium	anr			
Manganese	anr			
Molybdenum				
Nickel	0.00	0.00	NC	0-10
Potassium				
Selenium	0.00	0.00	NC	0-10
Silver	0.00	0.00	NC	0-10
Sodium	anr			
Strontium				
Thallium	0.00	0.00	NC	0-10
Tin				
Titanium				
Vanadium				
Zinc	0.00	0.00	NC	0-10

Associated samples MP29784: FA29765-5

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

8.4.4
8

POST DIGESTATE SPIKE SUMMARY

Login Number: FA29765

Account: UTC - United Technologies Corporation
Project: AECOMSCG: Delavan Spray Technologies; Bamberg, SCQC Batch ID: MP29784
Matrix Type: AQUEOUSMethods: SW846 6010C
Units: ug/l

Prep Date:

12/17/15

Metal	Sample ml	Final ml	FA30018-1 Raw	Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony	9.8	10	1.5	1.47	112.9	0.2	5	100	111.4	80-120
Arsenic	9.8	10			108.7	0.2	5	100	108.7	80-120
Barium										
Beryllium	9.8	10			53.2	0.2	2.5	50	106.4	80-120
Cadmium	9.8	10			53.4	0.2	2.5	50	106.8	80-120
Calcium										
Chromium	9.8	10			53.9	0.2	2.5	50	107.8	80-120
Cobalt										
Copper	9.8	10			107	0.2	5	100	107.0	80-120
Iron										
Lead	9.8	10	3.8	3.724	55.7	0.2	2.5	50	104.0	80-120
Magnesium										
Manganese										
Molybdenum										
Nickel	9.8	10			107.2	0.2	5	100	107.2	80-120
Potassium										
Selenium	9.8	10			105.3	0.2	5	100	105.3	80-120
Silver	9.8	10			47.9	0.2	2.5	50	95.8	80-120
Sodium										
Strontium										
Thallium	9.8	10			103.1	0.2	5	100	103.1	80-120
Tin										
Titanium										
Vanadium										
Zinc	9.8	10			269.1	0.2	12.5	250	107.6	80-120

Associated samples MP29784: FA29765-5

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(**) Corr. sample result = Raw * (sample volume / final volume)

(anr) Analyte not requested

8.45
8

Laboratory Report

AECOM Environmental
 10 Patewood Drive, Building VI, Suite 500
 Greenville, SC 29615
 Attn: Doria R. Cullom

Project: UTC Delavan Spray Technologies - SC
 Project #: 60314964

Laboratory ID	Client Sample ID	Matrix	Date Sampled	Date Received
SC15664-05	4-01 A.3	Waste Water	18-Dec-15 14:00	02-Dec-15 10:45
SC15664-06	4-02 A.3	Waste Water	18-Dec-15 14:00	02-Dec-15 10:45
SC15664-07	4-03 A.3	Waste Water	18-Dec-15 14:00	02-Dec-15 10:45
SC15664-08	4-04 A.3	Waste Water	18-Dec-15 14:00	02-Dec-15 10:45
SC15664-09	Control A.3	Waste Water	18-Dec-15 14:00	02-Dec-15 10:45
SC15664-10	4-01 A.1	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-11	4-01 A.2	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-12	4-02 A.1	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-13	4-02 A.2	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-14	4-03 A.1	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-15	4-03 A.2	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-16	4-04 A.1	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-17	4-04 A.2	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-18	Control A.2	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-19	4-01 B.1	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-20	4-01 B.2	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-21	4-02 B.1	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-22	4-02 B.2	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-23	4-03 B.1	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-24	4-03 B.2	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-25	4-04 B.1	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-26	4-04 B.2	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45
SC15664-27	Control B.2	Waste Water	21-Dec-15 00:00	02-Dec-15 10:45

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110

Connecticut # PH-0777

Florida # E87936

Maine # MA138

New Hampshire # 2538

New Jersey # MA011

New York # 11393

Pennsylvania # 68-04426/68-02924

Rhode Island # LAO00098

USDA # S-51435

Authorized by:

June O'Connor
Laboratory Director

Eurofins Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 13 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as “<” (less than) the reporting limit in this report.

The samples were received 1.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

There is no relevant protocol-specific QC and/or performance standards non-conformances to report.

Sample Acceptance Check Form

Client: AECOM Environmental - Greenville, SC
Project: UTC Delavan Spray Technologies - SC / 60314964
Work Order: SC15664
Sample(s) received on: 12/2/2015

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	<u>Yes</u>	<u>No</u>	<u>N/A</u>
Were custody seals present?	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Were custody seals intact?	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Were samples received at a temperature of $\leq 6^{\circ}\text{C}$?	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Were samples cooled on ice upon transfer to laboratory representative?	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Were sample containers received intact?	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Were samples accompanied by a Chain of Custody document?	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Did sample container labels agree with Chain of Custody document?	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
Were samples received within method-specific holding times?	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Summary of Hits

Lab ID: SC15664-05	Client ID: 4-01 A.3				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Hydrogen Peroxide	2650		18.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-06	Client ID: 4-02 A.3				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Hydrogen Peroxide	2200		18.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-07	Client ID: 4-03 A.3				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Hydrogen Peroxide	424		18.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-08	Client ID: 4-04 A.3				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Hydrogen Peroxide	1820		18.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-09	Client ID: Control A.3				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Hydrogen Peroxide	54.8		18.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-10	Client ID: 4-01 A.1				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Persulfate	7900		25.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-11	Client ID: 4-01 A.2				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Persulfate	17300		25.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-12	Client ID: 4-02 A.1				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Persulfate	7770		25.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-13	Client ID: 4-02 A.2				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Persulfate	17900		25.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-14	Client ID: 4-03 A.1				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Persulfate	7770		25.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-15	Client ID: 4-03 A.2				
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Persulfate	18200		25.0	mg/l	Spectrum SOP Mod.

This laboratory report is not valid without an authorized signature on the cover page.

Lab ID: SC15664-16**Client ID:** 4-04 A.1

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Persulfate	7900		25.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-17			Client ID: 4-04 A.2		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Persulfate	18300		25.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-18			Client ID: Control A.2		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Persulfate	18400		25.0	mg/l	Spectrum SOP Mod.
Lab ID: SC15664-19			Client ID: 4-01 B.1		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Potassium Permanganate	12500		0.75	mg/l	SM4500-KMNO4 B
Lab ID: SC15664-20			Client ID: 4-01 B.2		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Potassium Permanganate	18400		0.75	mg/l	SM4500-KMNO4 B
Lab ID: SC15664-21			Client ID: 4-02 B.1		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Potassium Permanganate	13600		0.75	mg/l	SM4500-KMNO4 B
Lab ID: SC15664-22			Client ID: 4-02 B.2		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Potassium Permanganate	19100		0.75	mg/l	SM4500-KMNO4 B
Lab ID: SC15664-23			Client ID: 4-03 B.1		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Potassium Permanganate	14300		0.75	mg/l	SM4500-KMNO4 B
Lab ID: SC15664-24			Client ID: 4-03 B.2		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Potassium Permanganate	20600		0.75	mg/l	SM4500-KMNO4 B
Lab ID: SC15664-25			Client ID: 4-04 B.1		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Potassium Permanganate	15100		0.75	mg/l	SM4500-KMNO4 B
Lab ID: SC15664-26			Client ID: 4-04 B.2		
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Potassium Permanganate	21400		0.75	mg/l	SM4500-KMNO4 B

This laboratory report is not valid without an authorized signature on the cover page.

Lab ID: SC15664-27

Client ID: Control B.2

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Potassium Permanganate	30800		0.75	mg/l	SM4500-KMNO4 B

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Identification

4-01 A.3

SC15664-05

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

18-Dec-15 14:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-84-1	Hydrogen Peroxide	2,650		mg/l	18.0	17.0	1	Spectrum SOP Mod.	21-Dec-15	21-Dec-15	MJL	1524563	

Sample Identification

4-02 A.3

SC15664-06

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

18-Dec-15 14:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-84-1	Hydrogen Peroxide	2,200		mg/l	18.0	17.0	1	Spectrum SOP Mod.	21-Dec-15	21-Dec-15	MJL	1524563	

Sample Identification

4-03 A.3

SC15664-07

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

18-Dec-15 14:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-84-1	Hydrogen Peroxide	424		mg/l	18.0	17.0	1	Spectrum SOP Mod.	21-Dec-15	21-Dec-15	MJL	1524563	

Sample Identification

4-04 A.3

SC15664-08

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

18-Dec-15 14:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-84-1	Hydrogen Peroxide	1,820		mg/l	18.0	17.0	1	Spectrum SOP Mod.	21-Dec-15	21-Dec-15	MJL	1524563	

Sample Identification

Control A.3

SC15664-09

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

18-Dec-15 14:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-84-1	Hydrogen Peroxide	54.8		mg/l	18.0	17.0	1	Spectrum SOP Mod.	21-Dec-15	21-Dec-15	MJL	1524563	

Sample Identification

4-01 A.1

SC15664-10

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7775-27-1	Persulfate	7,900		mg/l	25.0	3.40	1	Spectrum SOP Mod.	28-Dec-15	28-Dec-15	VIA	1524454	

This laboratory report is not valid without an authorized signature on the cover page.

Sample Identification

4-01 A.2

SC15664-11

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7775-27-1	Persulfate	17,300		mg/l	25.0	3.40	1	Spectrum SOP Mod.	28-Dec-15	28-Dec-15	VIA	1524454	

Sample Identification

4-02 A.1

SC15664-12

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7775-27-1	Persulfate	7,770		mg/l	25.0	3.40	1	Spectrum SOP Mod.	28-Dec-15	28-Dec-15	VIA	1524454	

Sample Identification

4-02 A.2

SC15664-13

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7775-27-1	Persulfate	17,900		mg/l	25.0	3.40	1	Spectrum SOP Mod.	28-Dec-15	28-Dec-15	VIA	1524454	

Sample Identification

4-03 A.1

SC15664-14

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7775-27-1	Persulfate	7,770		mg/l	25.0	3.40	1	Spectrum SOP Mod.	28-Dec-15	28-Dec-15	VIA	1524454	

Sample Identification

4-03 A.2

SC15664-15

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7775-27-1	Persulfate	18,200		mg/l	25.0	3.40	1	Spectrum SOP Mod.	28-Dec-15	28-Dec-15	VIA	1524454	

Sample Identification

4-04 A.1

SC15664-16

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7775-27-1	Persulfate	7,900		mg/l	25.0	3.40	1	Spectrum SOP Mod.	28-Dec-15	28-Dec-15	VIA	1524454	

This laboratory report is not valid without an authorized signature on the cover page.

Sample Identification

4-04 A.2

SC15664-17

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7775-27-1	Persulfate	18,300		mg/l	25.0	3.40	1	Spectrum SOP Mod.	28-Dec-15	28-Dec-15	VIA	1524454	

Sample Identification

Control A.2

SC15664-18

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7775-27-1	Persulfate	18,400		mg/l	25.0	3.40	1	Spectrum SOP Mod.	28-Dec-15	28-Dec-15	VIA	1524454	

Sample Identification

4-01 B.1

SC15664-19

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-64-7	Potassium Permanganate	12,500		mg/l	0.75	0.20	1	SM4500-KMNO4 B	30-Dec-15	30-Dec-15	VIA	1524661	

Sample Identification

4-01 B.2

SC15664-20

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-64-7	Potassium Permanganate	18,400		mg/l	0.75	0.20	1	SM4500-KMNO4 B	30-Dec-15	30-Dec-15	VIA	1524661	

Sample Identification

4-02 B.1

SC15664-21

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-64-7	Potassium Permanganate	13,600		mg/l	0.75	0.20	1	SM4500-KMNO4 B	30-Dec-15	30-Dec-15	VIA	1524661	

Sample Identification

4-02 B.2

SC15664-22

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-64-7	Potassium Permanganate	19,100		mg/l	0.75	0.20	1	SM4500-KMNO4 B	30-Dec-15	30-Dec-15	VIA	1524661	

This laboratory report is not valid without an authorized signature on the cover page.

Sample Identification

4-03 B.1

SC15664-23

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-64-7	Potassium Permanganate	14,300		mg/l	0.75	0.20	1	SM4500-KMNO4 B	30-Dec-15	30-Dec-15	VIA	1524661	

Sample Identification

4-03 B.2

SC15664-24

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-64-7	Potassium Permanganate	20,600		mg/l	0.75	0.20	1	SM4500-KMNO4 B	30-Dec-15	30-Dec-15	VIA	1524661	

Sample Identification

4-04 B.1

SC15664-25

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-64-7	Potassium Permanganate	15,100		mg/l	0.75	0.20	1	SM4500-KMNO4 B	30-Dec-15	30-Dec-15	VIA	1524661	

Sample Identification

4-04 B.2

SC15664-26

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-64-7	Potassium Permanganate	21,400		mg/l	0.75	0.20	1	SM4500-KMNO4 B	30-Dec-15	30-Dec-15	VIA	1524661	

Sample Identification

Control B.2

SC15664-27

Client Project #

60314964

Matrix

Waste Water

Collection Date/Time

21-Dec-15 00:00

Received

02-Dec-15

<u>CAS No.</u>	<u>Analyte(s)</u>	<u>Result</u>	<u>Flag</u>	<u>Units</u>	<u>*RDL</u>	<u>MDL</u>	<u>Dilution</u>	<u>Method Ref.</u>	<u>Prepared</u>	<u>Analyzed</u>	<u>Analyst</u>	<u>Batch</u>	<u>Cert.</u>
General Chemistry Parameters													
7722-64-7	Potassium Permanganate	30,800		mg/l	0.75	0.20	1	SM4500-KMNO4 B	30-Dec-15	30-Dec-15	VIA	1524661	

This laboratory report is not valid without an authorized signature on the cover page.

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1524454 - General Prep - R&D										
<u>Blank (1524454-BLK1)</u>										
Persulfate	< 25.0		mg/l	25.0						
<u>Blank (1524454-BLK2)</u>										
Persulfate	< 25.0		mg/l	25.0						
<u>Blank (1524454-BLK3)</u>										
Persulfate	< 25.0		mg/l	25.0						
<u>LCS (1524454-BS1)</u>										
Persulfate	478		mg/l	25.0	500	96	80-120			
<u>LCS (1524454-BS2)</u>										
Persulfate	470		mg/l	25.0	500	94	80-120			
<u>LCS (1524454-BS3)</u>										
Persulfate	474		mg/l	25.0	500	95	80-120			
<u>Duplicate (1524454-DUP1)</u>										
Persulfate	7520		mg/l	25.0		7900			5	20
<u>Matrix Spike (1524454-MS1)</u>										
Persulfate	109000		mg/l	25.0	100000	7900	101	70-130		
<u>Matrix Spike Dup (1524454-MSD1)</u>										
Persulfate	104000		mg/l	25.0	100000	7900	96	70-130	5	20
Batch 1524563 - General Prep - R&D										
<u>Blank (1524563-BLK1)</u>										
Hydrogen Peroxide	< 18.0		mg/l	18.0						
<u>LCS (1524563-BS1)</u>										
Hydrogen Peroxide	497		mg/l	18.0	456	109	80-120			
<u>Duplicate (1524563-DUP1)</u>										
Hydrogen Peroxide	2650		mg/l	18.0		2650			0	20
Batch 1524661 - General Preparation										
<u>Blank (1524661-BLK1)</u>										
Potassium Permanganate	< 0.75		mg/l	0.75						
<u>Blank (1524661-BLK2)</u>										
Potassium Permanganate	< 0.75		mg/l	0.75						
<u>Blank (1524661-BLK3)</u>										
Potassium Permanganate	< 0.75		mg/l	0.75						
<u>LCS (1524661-BS1)</u>										
Potassium Permanganate	24.0		mg/l	0.75	25.0	96	80-120			
<u>LCS (1524661-BS2)</u>										
Potassium Permanganate	23.8		mg/l	0.75	25.0	95	80-120			
<u>LCS (1524661-BS3)</u>										
Potassium Permanganate	23.8		mg/l	0.75	25.0	95	80-120			
<u>Duplicate (1524661-DUP1)</u>										
Potassium Permanganate	12600		mg/l	0.75		12500			0.9	20
<u>Matrix Spike (1524661-MS1)</u>										
Potassium Permanganate	38000		mg/l	0.75	25000	12500	102	80-120		
<u>Matrix Spike Dup (1524661-MSD1)</u>										
Potassium Permanganate	38000		mg/l	0.75	25000	12500	102	80-120	0.2	20

This laboratory report is not valid without an authorized signature on the cover page.

Notes and Definitions

dry Sample results reported on a dry weight basis
NR Not Reported
RPD Relative Percent Difference

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

Surrogate: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Continuing Calibration Verification: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by:
Rebecca Merz

FedEx
Express Package
US Airbill

FedEx
Tracking
Number

8020 4594 7091

1 From

12/1/15

Date

Sender's
Name

Leslie Alexander

Phone 864 234-3002

Company AECOM TECHNICAL SERVICES

Address 10 PATEWOOD DR BLDG 6

Dept./Floor/Suite/Room

City GREENVILLE

State SC

ZIP 29615-6317

2 Your Internal Billing Reference

60314964-11

3 To
Recipient's
Name

Sample Recieving Phone 413 737-7618

Company

Eurofins/Spectra Analytical

Address

11 Almgren Dr

We cannot deliver to P.O. boxes or P.O. ZIP codes.

Dept./Floor/Suite/Room

Address

Use this line for the HOLD location address or for continuation of your shipping address.

City Agawam

State MA

ZIP

HOLD Weekday
FedEx location address
REQUIRED. NOT available for
FedEx First Overnight.HOLD Saturday
FedEx location address
REQUIRED. Available ONLY for
FedEx Priority Overnight and
FedEx 2Day to select locations.

FedEx
TRK# 8020 4594 7091
0215

8020 4594 7091

NC EHTA

Form ID No. 0215

MUR4

Recipient's Copy

4 Express Package Service* To most locations.
NOTE: Service order has changed. Please select carefully.**Next Business Day** FedEx First Overnight

Earliest next business morning delivery to select locations. Friday shipments will be delivered on Monday unless SATURDAY Delivery is selected.

 FedEx Priority Overnight

Next business morning. Friday shipments will be delivered on Monday unless SATURDAY Delivery is selected.

 FedEx Standard Overnight

Next business afternoon.* Saturday Delivery NOT available.

 FedEx 2Day A.M.

Second business morning.* Saturday Delivery NOT available.

 FedEx 2Day

Second business afternoon.* Thursday shipments will be delivered on Monday unless SATURDAY Delivery is selected.

 FedEx Express Saver

Third business day.* Saturday Delivery NOT available.

2 or 3 Business Days FedEx 2Day A.M.

Second business morning.* Saturday Delivery NOT available.

 FedEx 2Day

Second business afternoon.* Thursday Delivery NOT available.

 FedEx Express Saver

Third business day.* Saturday Delivery NOT available.

5 Packaging

* Declared value limit \$500.

 FedEx Envelope* FedEx Pak* FedEx Box FedEx Tube Other**6 Special Handling and Delivery Signature Options** SATURDAY Delivery

NOT available for FedEx Standard Overnight, FedEx 2Day A.M., or FedEx Express Saver.

 No Signature Required

Package may be left without obtaining a signature for delivery.

 Direct SignatureSomeone at recipient's address may sign for delivery. *Fee applies.***Does this shipment contain dangerous goods?**

One box must be checked.

 No Yes

As per attached Shipper's Declaration.

 Yes

Shipper's Declaration not required.

 Dry Ice

Dry Ice, 9. UN 1845

kg

Dangerous goods (including dry ice) cannot be shipped in FedEx packaging or placed in a FedEx Express Drop Box.

 Cargo Aircraft Only Cargo Aircraft Only Obtain recip. Acct. No. Cash/Check 611WED - 02 DEC 10:30A
PRIORITY OVERNIGHT01001
MA-US
BDL

Spectrum Analytical

CHAIN OF CUSTODY RECORD

Page 1 of 3Report To: Christina White

Invoice To: _____

Project No: SC15604

Telephone #: _____

Project Mgr: _____

P.O No.: _____

Quote #: _____

Site Name: _____

Location: _____

Sampler(s): _____

State: _____

F=Field Filtered 1=Na₂S₂O₃ 2=HCl 3=H₂SO₄ 4=HNO₃ 5=NaOH 6=Ascorbic Acid
 7=CH₃OH 8=NaHSO₄ 9=Deionized Water 10=H₃PO₄ 11= _____ 12= _____

List Preservative Code below:

DW=Dinking Water GW=Groundwater SW=Surface Water WW=Waste Water

O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas

X1= _____ X2= _____ X3= _____

G= Grab

C=Composite

Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	Containers				Analysis				Check if chlorinated
						# of VOA Vials	# of Amber Glass	# of Clear Glass	# of Plastic	Hydrogen Peroxide	Sodium Persulfate			
15604-05	4-01 A.3	12/18/15	1400	G	WW	1				X				<input type="checkbox"/>
-06	4-02 A.3			G	WW	1				X				<input type="checkbox"/>
-07	4-03 A.3			G	WW	1				X				<input type="checkbox"/>
-08	4-04 A.3			G	WW	1				X				<input type="checkbox"/>
-09	Control A.3	↓	↓	G	WW	1				X				<input type="checkbox"/>
-10	4-01 A.1	12/21/15		G	WW	1				X				<input type="checkbox"/>
-11	4-01 A.2			G	WW	1				X				<input type="checkbox"/>
-12	4-02 A.1			G	WW	1				X				<input type="checkbox"/>
-13	4-02 A.2			G	WW	1				X				<input type="checkbox"/>
-14	4-03 A.1	↓		G	WW	1				X				<input type="checkbox"/>

Relinquished by: _____

Received by: _____

Date: _____

Time: _____

Temp °C _____

Observed

Correclion Factor

Corrected

IR ID # _____

 EDD format: _____ E-mail to: _____Condition upon receipt: Custody Seals: Present Intact Broken Ambient Iced Refrigerated DI VOA Frozen Soil Jar Froz

Rev. Sep 2015

SC15604

Special Handling:

 Standard TAT - 7 to 10 business days Rush TAT - Date Needed: _____All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 60 days unless otherwise instructed.

QA/QC Reporting Notes:

* additional charges may apply

MA DEP MCP CAM Report? Yes NoCT DPH RCP Report? Yes No Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Tier IV* Other: _____

State-specific reporting standards: _____

Spectrum Analytical

CHAIN OF CUSTODY RECORD

Page 2 of 3

Special Handling:

 Standard TAT - 7 to 10 business days Rush TAT - Date Needed: _____All TATs subject to laboratory approval
Min. 24-hr notification needed for rushes
Samples disposed after 60 days unless otherwise instructed.Report To: Christina White

_____Invoice To: _____

_____Project No: SC15CC04
Site Name: _____
Location: _____
Sampler(s): _____
State: _____Telephone #: _____
Project Mgr: _____P.O No.: _____
Quote #: _____F=Field Filtered 1=Na₂S₂O₃ 2=HCl 3=H₂SO₄ 4=HNO₃ 5=NaOH 6=Ascorbic Acid
7=CH₃OH 8=NaHSO₄ 9=Deionized Water 10=H₃PO₄ 11= _____ 12= _____

List Preservative Code below:

DW=Dinking Water GW=Groundwater SW=Surface Water WW=Waste Water

O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas

X1= _____ X2= _____ X3= _____

QA/QC Reporting Notes:

* additional charges may apply

 MA DEP MCP CAM Report? Yes No CT DPH RCP Report? Yes No Standard No QC DQA* ASP A* ASP B* NJ Reduced* NJ Full* Tier II* Tier IV* Other: _____

State-specific reporting standards:

Check if chlorinated

Lab ID:	Sample ID:	Date:	Time:	Type	Matrix	Containers			Analysis		
						# of VOA Vials	# of Amber Glass	# of Clear Glass	# of Plastic	Sodium	Potassium
15	4-03 A.2	12/21/15		G	WW	1				X	
16	4-04 A.1			G	WW	1				X	
17	4-04 A.2			G	WW	1				X	
18	control A.2			G	WW	1				X	
19	4-01 A.B.1			G	WW	1				X	
20	4-01 B.2			G	WW	1				X	
21	4-02 B.1			G	WW	1				X	
22	4-02 B.2			G	WW	1				X	
23	4-03 B.1			G	WW	1				X	
24	4-03 B.2			G	WW	1				X	

Relinquished by:

Received by:

Date:

Time:

Temp °C

Observed

Correction Factor

Corrected

IR ID #

 EDD format: _____ E-mail to: _____Condition upon receipt: Custody Seals: Present Intact Broken Ambient Iced Refrigerated DI VOA Frozen Soil Jar Frozen

Total Oxidant Demand

The total oxidant demand (TOD) for persulfate, permanganate, and Fenton's reagent was done for site soils BG-6-6, BG-6-10, BG-7-6, and BG-7-10. Tests were done using Deionized (DI) water as the solvent.

The TOD of the site soil was determined using a series of jar experiments at one or two oxidant/soil ratios depending on the oxidant under a water/soil ratio of 5:1 (by weight) at 23 °C. 250-mL jars were used for the experiments. The Fenton's Reagent tests were done at only one concentration. Each jar was capped and left at a temperature of 23 °C for a period of time depending on the oxidant. See [Table 1](#) for details. All samples were measured for the oxidant level at the end of the test period. Consumption of the oxidant (at the two oxidant concentrations) by the soil was determined at the end of the tests. The TOD was determined using equation 1:

$$\text{TOD} = V(C_o - C_s)/m_{\text{soil}} \quad (1)$$

Where V = the total volume of oxidant solution in the reactor; C_o = initial oxidant concentration; C_s = the oxidant concentration at the reaction period; m_{soil} = the mass of soil used in the reaction.

The results of the TOD test are shown in [Table 2](#) grouped by oxidant. There was significant auto-decomposition seen in the control for the Fenton's Reagent tests. There was some auto-decomposition seen in the persulfate control test but none in the permanganate control. The oxidant demand for all soils was highest for the Fenton's Reagent and lowest for the persulfate.

Table 1: Test Conditions

ID	soil used	amount of soil	amount of solution	oxidant	oxidant concentration	test days
4-01 A.3	BG-6-6	40 g	200 mL	Fenton's reagent	* see note	2
4-02 A.3	BG-6-10	40 g	200 mL	Fenton's reagent	* see note	2
4-03 A.3	BG-7-6	40 g	200 mL	Fenton's reagent	* see note	2
4-04 A.3	BG-7-10	40 g	200 mL	Fenton's reagent	* see note	2
Control A.3	none	none	200 mL	Fenton's reagent	* see note	2
4-01 A.1	BG-6-6	40 g	200 mL	persulfate	10 g/L	5
4-01 A.2	BG-6-6	40 g	200 mL	persulfate	20 g/L	5
4-02 A.1	BG-6-10	40 g	200 mL	persulfate	10 g/L	5
4-02 A.2	BG-6-10	40 g	200 mL	persulfate	20 g/L	5
4-03 A.1	BG-7-6	40 g	200 mL	persulfate	10 g/L	5
4-03 A.2	BG-7-6	40 g	200 mL	persulfate	20 g/L	5
4-04 A.1	BG-7-10	40 g	200 mL	persulfate	10 g/L	5
4-04 A.2	BG-7-10	40 g	200 mL	persulfate	20 g/L	5
Control A.2	none	none	200 mL	persulfate	20 g/L	5
4-01 B.1	BG-6-6	40 g	200 mL	permanganate	20 g/L	5
4-01 B.2	BG-6-6	40 g	200 mL	permanganate	30 g/L	5
4-02 B.1	BG-6-10	40 g	200 mL	permanganate	20 g/L	5
4-02 B.2	BG-6-10	40 g	200 mL	permanganate	30 g/L	5
4-03 B.1	BG-7-6	40 g	200 mL	permanganate	20 g/L	5
4-03 B.2	BG-7-6	40 g	200 mL	permanganate	30 g/L	5
4-04 B.1	BG-7-10	40 g	200 mL	permanganate	20 g/L	5
4-04 B.2	BG-7-10	40 g	200 mL	permanganate	30 g/L	5
Control B.2	none	none	200 mL	permanganate	30 g/L	5

* concentration of oxidant is 100 mL/kg 30% peroxide with 2 g/kg ferrous sulfate

Table 2: TOD results

	SC15664-05 4-01 A.3 BG-6-6	SC15664-06 4-02 A.3 BG-6-10	SC15664-07 4-03 A.3 BG-7-6	SC15664-08 4-04 A.3 BG-7-10	SC15664-09 Control A.3 none				
soil used additive									
					28.9 g/L of 30% peroxide and 2 g/kg of ferrous sulfate				
Hydrogen Peroxide, g/L	2.65	2.20	0.424	1.82	0.055				
TOD peroxide, g/kg	131	134	142	135	144				
	SC15664-10 4-01 A.1 BG-6-6 10 g/L	SC15664-11 4-01 A.2 20 g/L	SC15664-12 4-02 A.1 BG-6-10 10 g/L	SC15664-13 4-02 A.2 20 g/L	SC15664-14 4-03 A.1 BG-7-6 10 g/L	SC15664-15 4-03 A.2 20 g/L	SC15664-16 4-04 A.1 BG-7-10 10 g/L	SC15664-17 4-04 A.2 20 g/L	SC15664-18 Control A.2 none 20 g/L
Persulfate, g/L	7.90	17.3	7.77	17.9	7.77	18.2	7.90	18.3	18.4
TOD persulfate, g/kg	11	14	11	11	11	9.0	11	8.5	8.0
	SC15664-19 4-01 B.1 BG-6-6 20 g/L	SC15664-20 4-01 B.2 30 g/L	SC15664-21 4-02 B.1 BG-6-10 20 g/L	SC15664-22 4-02 B.2 30 g/L	SC15664-23 4-03 B.1 BG-7-6 20 g/L	SC15664-24 4-03 B.2 30 g/L	SC15664-25 4-04 B.1 BG-7-10 20 g/L	SC15664-26 4-04 B.2 30 g/L	SC15664-27 Control B.2 none 30 g/L
Permanganate, g/L	12.5	18.4	13.6	19.1	14.3	20.6	15.1	21.4	30.8
TOD permanganate, g/kg	38	58	32	55	29	47	25	43	0

DATA ASSESSMENT REPORT

Data assessment is a systematic process for reviewing a body of data against a predefined set of criteria to provide assurance that the data meet project Data Quality Objective (DQO) requirements. The purpose of the data assessment process is to determine if and how the usability of the analytical data is affected by the overall analytical processes and sample collection and handling procedures. If specific DQOs are not met, the data are qualified (i.e., data flags are assigned to sample results) in accordance with guidelines established by the United States Environmental Protection Agency (USEPA). Data assessment allows the data user to adequately determine if the data can be used for its intended purpose. The data acceptance criteria are established according to Standard Operating Procedures (SOPs) and Statements of Work (SOWs) provided to the contracted analytical laboratory. The assessment of data quality and usability involves five components, as described below.

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and identification (ID), cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) **Data Verification** is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the *USEPA National Functional Guidelines for Inorganic Superfund Data Review* (USEPA, August 2014) and *USEPA National Functional Guidelines for Superfund Organic Data Review* (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the *Test Methods for Evaluation Solid Waste (SW-846), Update IV* (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data associated with analytical data package FA29626 were collected on December 1, 2015 for UTC - Delavan Spray Technologies located in Bamberg, South Carolina. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash “/” and presented in the following format:

Laboratory Flag / Result Flags / Analysis Flags

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Volatile Organic Compounds by Method 8260B

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Data Summary and Usability

No QC excursions were encountered during the validation of this data set. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. *Test Methods for Evaluating Solid Waste (SW-846), Update IV*.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.

DATA ASSESSMENT REPORT

Data assessment is a systematic process for reviewing a body of data against a predefined set of criteria to provide assurance that the data meet project Data Quality Objective (DQO) requirements. The purpose of the data assessment process is to determine if and how the usability of the analytical data is affected by the overall analytical processes and sample collection and handling procedures. If specific DQOs are not met, the data are qualified (i.e., data flags are assigned to sample results) in accordance with guidelines established by the United States Environmental Protection Agency (USEPA). Data assessment allows the data user to adequately determine if the data can be used for its intended purpose. The data acceptance criteria are established according to Standard Operating Procedures (SOPs) and Statements of Work (SOWs) provided to the contracted analytical laboratory. The assessment of data quality and usability involves five components, as described below.

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and identification (ID), cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) **Data Verification** is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the *USEPA National Functional Guidelines for Inorganic Superfund Data Review* (USEPA, August 2014) and *USEPA National Functional Guidelines for Superfund Organic Data Review* (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the *Test Methods for Evaluation Solid Waste (SW-846), Update IV* (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data associated with analytical data package FA29657 were collected on December 2, 2015 for UTC - Delavan Spray Technologies located in Bamberg, South Carolina. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash “/” and presented in the following format:

Laboratory Flag / Result Flags / Analysis Flags

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Volatile Organic Compounds by Method 8260B

Results of tetrachloroethylene in sample DPT-61-8-a were qualified “/M/m” due to low recovery in the associated matrix spike sample below the established criteria of 35-165% (-881%). These qualifiers indicate the results should be considered biased low.

Data Summary and Usability

The QC excursions encountered during the validation of this data set did not result in the rejection of any data. Therefore, the data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. *Test Methods for Evaluating Solid Waste (SW-846), Update IV*.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.

DATA ASSESSMENT REPORT

Data assessment is a systematic process for reviewing a body of data against a predefined set of criteria to provide assurance that the data meet project Data Quality Objective (DQO) requirements. The purpose of the data assessment process is to determine if and how the usability of the analytical data is affected by the overall analytical processes and sample collection and handling procedures. If specific DQOs are not met, the data are qualified (i.e., data flags are assigned to sample results) in accordance with guidelines established by the United States Environmental Protection Agency (USEPA). Data assessment allows the data user to adequately determine if the data can be used for its intended purpose. The data acceptance criteria are established according to Standard Operating Procedures (SOPs) and Statements of Work (SOWs) provided to the contracted analytical laboratory. The assessment of data quality and usability involves five components, as described below.

- 1) **Field Sampling Check** is a process to ensure that all samples were collected and the laboratory analyses were performed as stipulated in the applicable site-specific Work Plan or Field Sampling Plan (FSP). Inspection of sample preservation procedures, sample handling, analysis requested, sample description and identification (ID), cooler receipt forms, holding time evaluation, and Chain of Custody procedures are all evaluated to ensure that the evidentiary nature of the samples and the resulting analytical data have not been compromised.
- 2) **Data Verification** is a process for determining the completeness, correctness, consistency, and compliance of a data package in accordance with requirements contained in the applicable SOW and/or contract-specific requirements. This is a review of the data package, electronic data deliverable (EDD), and invoice received from the contract laboratory to ensure that the contract required information is present and complete prior to data validation.
- 3) **Data Review** is a process of reviewing the primary quality control (QC) data provided by the laboratory and the results of any internal quality assurance (QA)/QC samples, such as field blanks, trip blanks, equipment blanks or ambient blanks, field split samples, and duplicate samples, to ascertain any effect the laboratory's procedures or the sample collection process has on the data.
- 4) **Data Evaluation** is a process to determine if the data meet project-specific DQOs and contract requirements. This evaluation may involve a review of field sampling and sample management procedures, laboratory audits, Performance Evaluation (PE) sample results, and any other data quality indicators that are available.
- 5) **Data Validation** is a process to determine the accuracy and precision of analytical data generated and to identify any anomalies encountered. The validation process is performed in accordance with USEPA regional or national functional guidelines, project-specific guidelines, and

compliance with the requirements of each analytical method. Two major components of data validation are laboratory performance and matrix interferences. Evaluation of laboratory performance is a check for compliance for each analytical method to determine if the samples were analyzed within the prescribed acceptance criteria of the method. Evaluation of matrix interferences involves the analysis of surrogate spike recoveries, matrix spike recoveries, and duplicate sample results. Data not meeting project-specific DQOs or the requirements of the analytical method are qualified with data flags according to referenced guidelines.

Data Assessment Procedures

AECOM performed independent QC checks of field and laboratory procedures that were used in collecting and analyzing the data. The QC checks verify that the data collected are of appropriate quality for the intended data use and that the DQOs were met. The steps and guidelines followed during the data validation process were modeled on the *USEPA National Functional Guidelines for Inorganic Superfund Data Review* (USEPA, August 2014) and *USEPA National Functional Guidelines for Superfund Organic Data Review* (USEPA, August 2014). In addition, method-specific criteria set forth in the compendium of analytical methods found in the *Test Methods for Evaluation Solid Waste (SW-846), Update IV* (USEPA, February 2007) are also evaluated during the validation process. This validation process has been adapted to meet the DQO requirements for generation of definitive critical data.

Data Validation Results

The analytical data associated with analytical data package FA29765 were collected on December 4, 2015 for UTC - Delavan Spray Technologies located in Bamberg, South Carolina. The analytical data were validated according to the procedures outlined above. Where data flags have been applied to this data set, they are separated by a slash “/” and presented in the following format:

Laboratory Flag / Result Flags / Analysis Flags

- Laboratory Flag: This flag precedes the first slash and is added by the laboratory as a result of QC excursions from the analytical method. These flags are laboratory-specific and are described in the associated laboratory report.
- Result Flags: These are presented after the first slash and are added by AECOM based on data validation procedures and guidelines. They tell how and if the data should be used.
- Analysis Flags: These flags are presented after the second slash and are added by AECOM to inform the data user of any specific QA/QC problems that were encountered.

Any data requiring qualification as a result of the validation process were assigned data flags, as discussed below. The validation flags indicate how any QC excursions may have impacted the usability of the data.

Total and TCLP Volatile Organic Compounds by Method 8260B

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Total and TCLP Semivolatile Organic Compounds by Method 8270D

Non-detections of semivolatile organic compound benzoic acid in samples associated with preparatory batch OP58654 (sample Aqueous IDW) were qualified “/R/c” due to recovery in the associated laboratory control sample below the established criteria of 25-150% (18%). These qualifiers indicate the non-detections are biased low and should be rejected.

PP and TCLP Metals by Methods 6010C/7470B/7471B

Results of the validation process indicate that the data analyzed for this method are acceptable for their intended use and no data flags are required.

Data Summary and Usability

With the exception of the non-detections of semivolatile organic compound benzoic acid in samples associated with preparatory batch OP58654 (sample Aqueous IDW), the QC excursions encountered during the validation of this data set did not result in the rejection of any data. Therefore, the remaining data associated with this laboratory batch should be considered compliant and adequate for its intended use.

References

United States Environmental Protection Agency (USEPA), February 2007. *Test Methods for Evaluating Solid Waste (SW-846), Update IV*.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Superfund Organic Data Review*. Publication #EPA540-R-014-002.

United States Environmental Protection Agency (USEPA), August 2014. *USEPA National Functional Guidelines for Inorganic Superfund Data Review*. Publication #USEPA540/R-013-001.