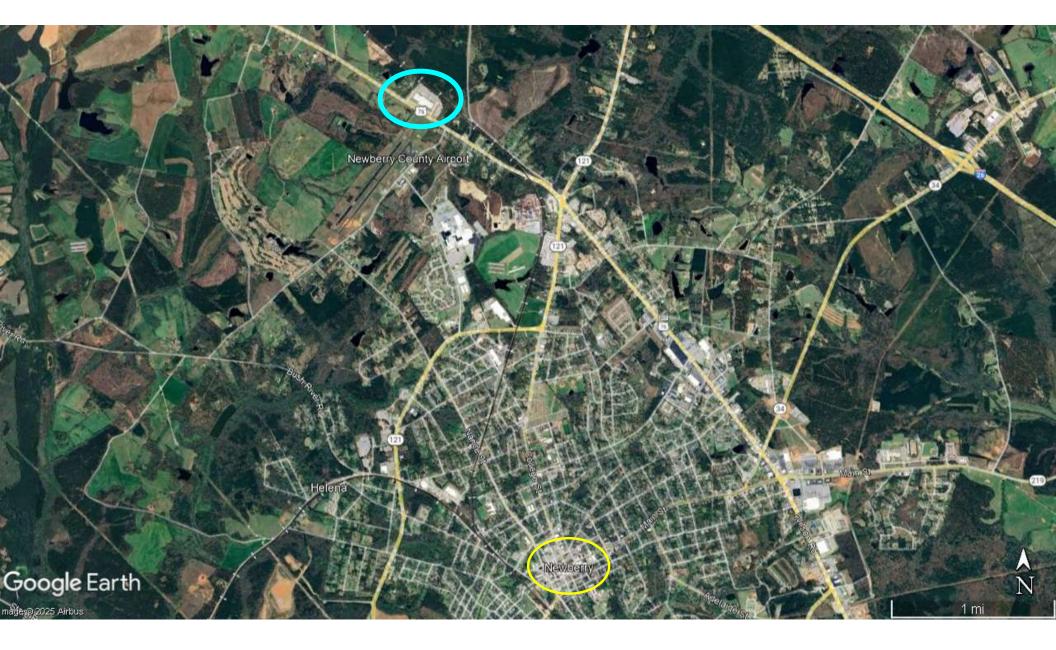
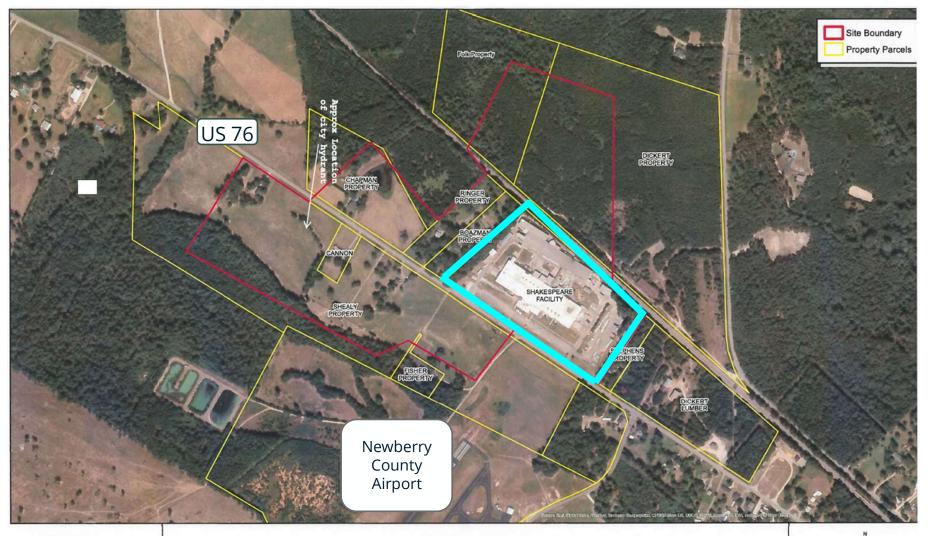



# Former Shakespeare Composite Structures Site

March 11, 2025




# Agenda


- Site History
- Feasibility Study and Proposed Plan
- Proposed Plan Alternatives
- Evaluation of Alternatives
- SCDES's Preferred Alternative
- Public Comment Period

# **Site History**

A brief overview









101 Research Drive Columbia, SC 29203-9389 T: (803) 254-4400 F: (803) 771-6676 Figure 1-2: Site Plan

Shakespeare Composition Structures Newberry, South Carolina ₩s 225 450 90

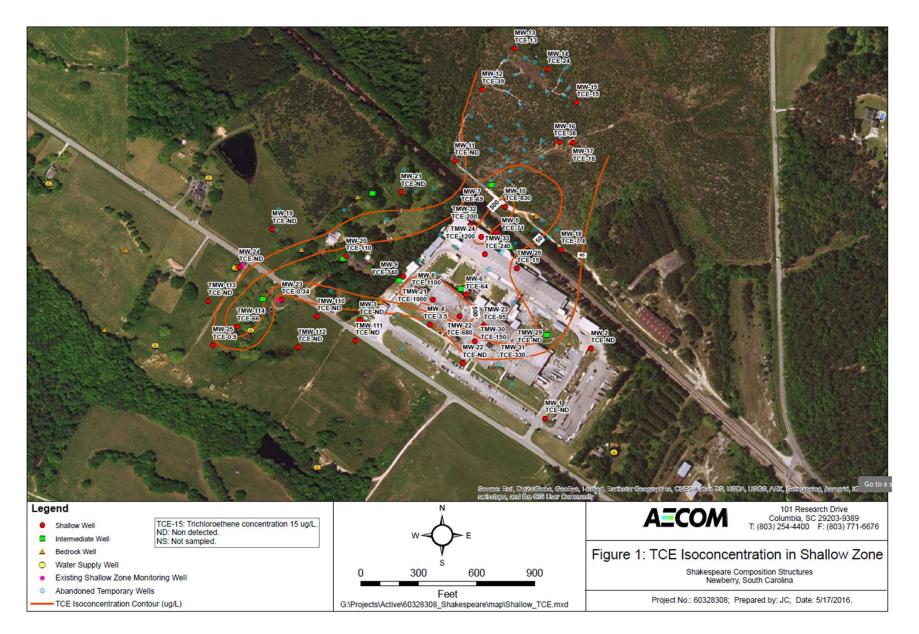
0

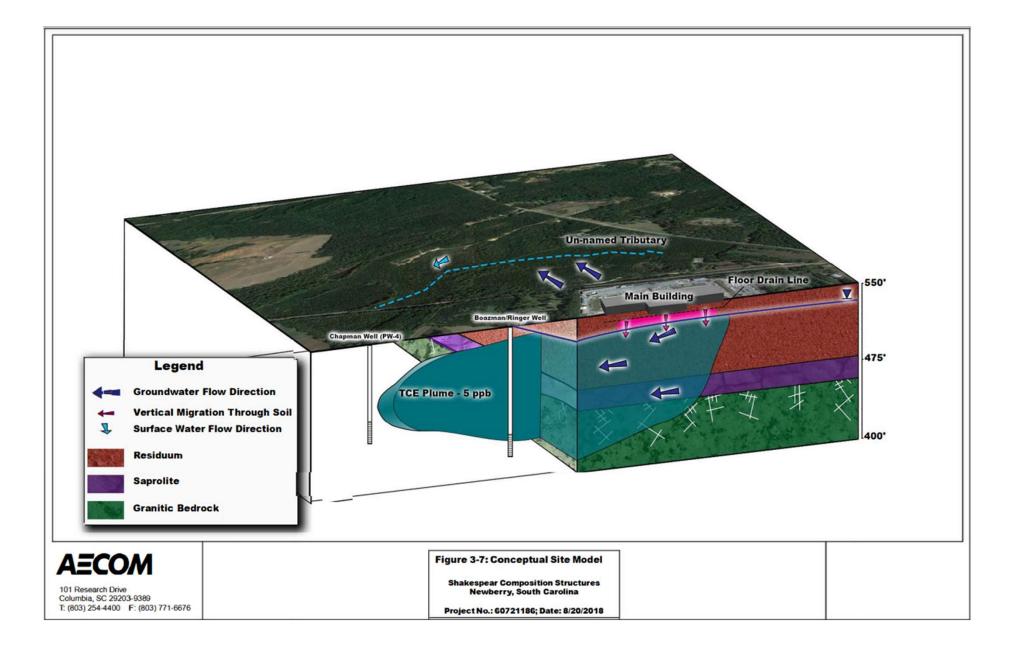
Project No.: 60635197; Prepared by: KA; Date: 09/10/20

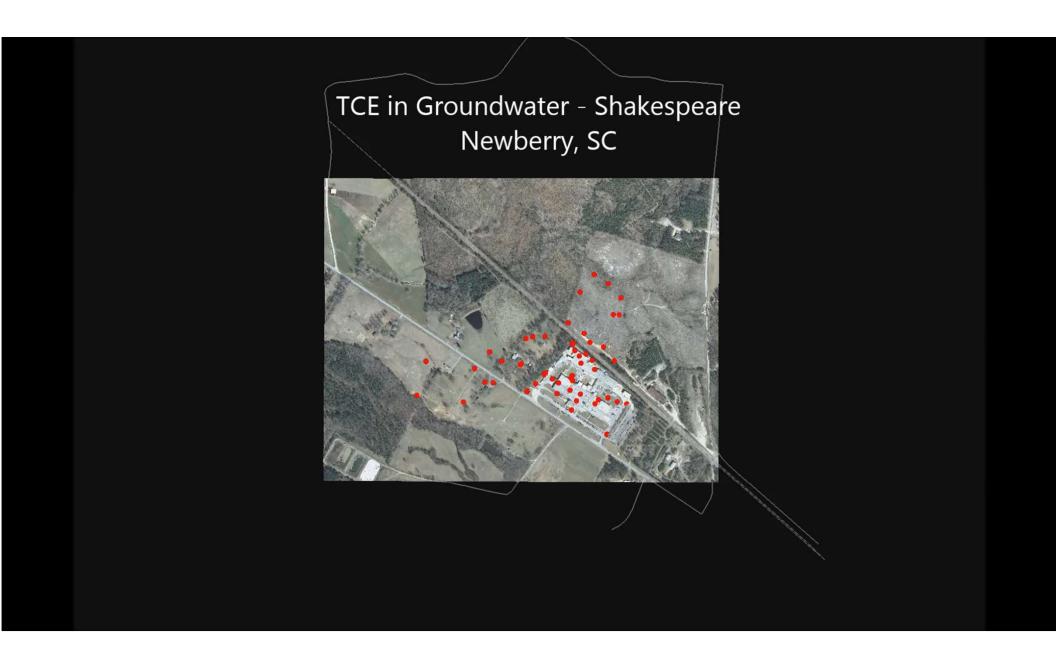
5

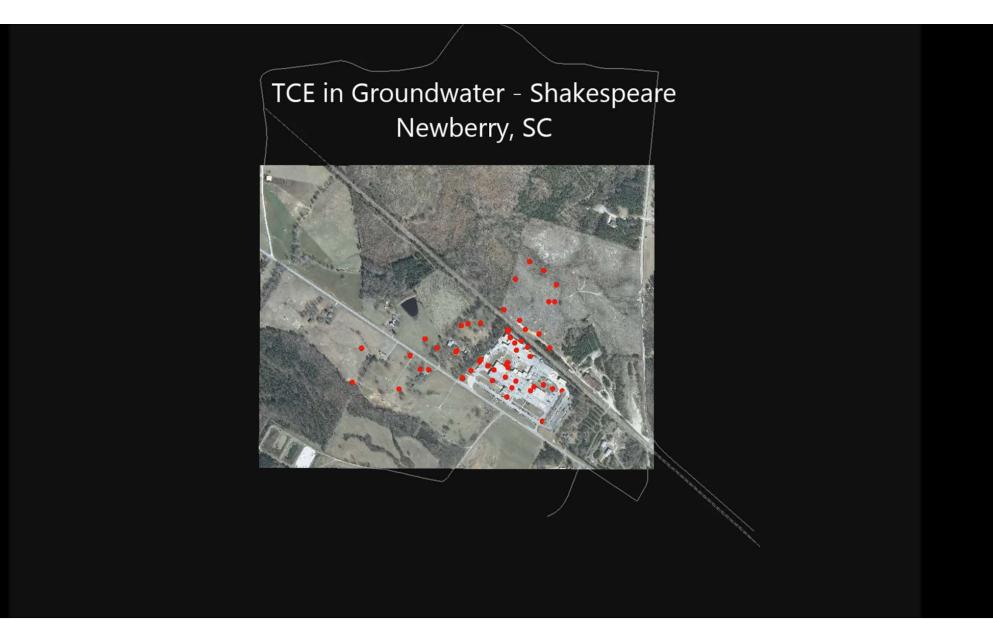
## A very rough timeline...



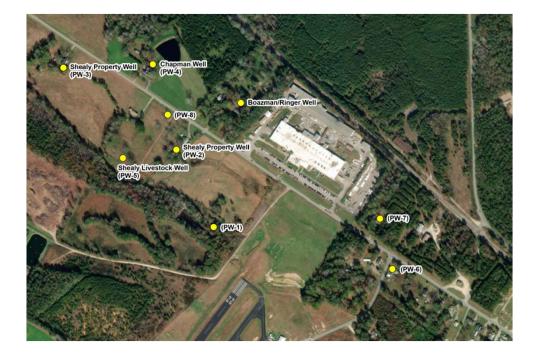

### **Chemicals of Concern**


| Chemical of Concern                    | Maximum Contaminant Level (MCL)<br>for Groundwater |
|----------------------------------------|----------------------------------------------------|
| PCE (tetrachloroethene)                | 5 µg/L or 5 ppb                                    |
| TCE (trichloroethene)                  | 5 μg/L or 5 ppb                                    |
| Cis – 1,2 DCE (cis-1,2-dichloroethene) | 70 µg/L or 70 ppb                                  |
| VC (vinyl chloride)                    | 2 µg/L or 2 ppb                                    |


### **Important Areas**


- Main Building
- West of the Main Building
- Pole Winder Building
- North of the Site, near the train tracks

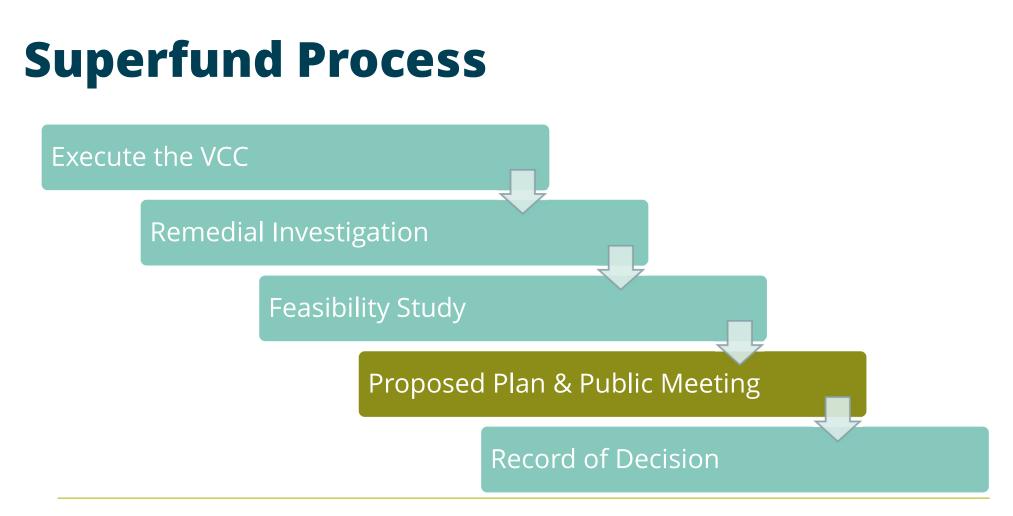












### **Risks of Contamination**



- Soil
- Vapor Intrusion
- Groundwater

# Feasibility Study and Proposed Plan



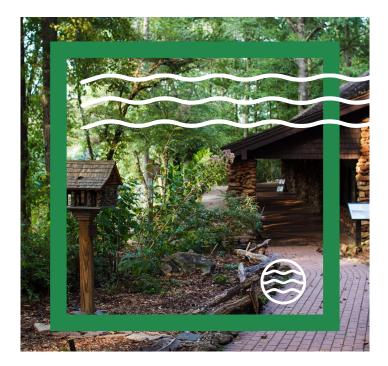


## **Feasibility Study**

#### Remedial Action Objectives (RAOs)

- Control, reduce, or eliminate incidental ingestion and direct contact of groundwater with VOCs at concentrations exceeding MCLs by human receptors.
- Control, reduce, or eliminate leaching of VOCs from soil to groundwater which would result in exceedance of groundwater MCLs.
- Control, reduce, or eliminate inhalation of soil vapor containing VOCs at concentrations exceeding the USEPA Industrial RSLs by human receptors.
- Restore groundwater to drinking level standards at areas not under land use restrictions.




# **Proposed Plan Alternatives**



### **Proposed Plan Alternatives**

### 5 Alternatives

- 2 Passive; 3 Active
- All are theoretical.
- After a remedy is selected, a Remedial Design Work Plan will be submitted to SCDES for *review and approval*.



### No Action

- This alternative maintains the site as-is.
- Cost: \$0

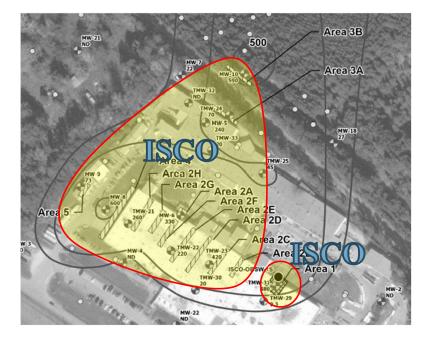
### Monitored Natural Attenuation (MNA), Institutional Controls (IC), and Containment via Cover (CvC)

- This alternative involves monitoring the current well network, restrictions on land and groundwater use, and maintenance of the buildings' floors.
- Cost: \$1,137,000 over a 30-year period.

| In Situ          | Injection Events |  | Time |
|------------------|------------------|--|------|
|                  |                  |  |      |
| Common name:     |                  |  |      |
| What does it do? |                  |  |      |
| Challenges:      |                  |  |      |

| In Situ          |                                                                                                      | Injection Events |  | Time |
|------------------|------------------------------------------------------------------------------------------------------|------------------|--|------|
|                  | In Situ Chemical<br>Oxidation                                                                        |                  |  |      |
| Common name:     | ISCO                                                                                                 |                  |  |      |
| What does it do? | Chemical oxidants used<br>to transform CVOCs into<br>less toxic forms.                               |                  |  |      |
| Challenges:      | Oxidant gets used up<br>quickly, multiple<br>injections. Hard to reach<br>places. Even applications. |                  |  |      |

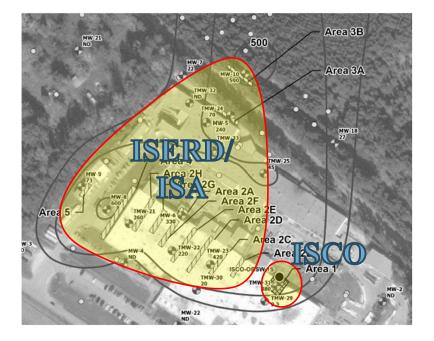
| In Situ          | Injection Events                                                                                     |                                                                           | S | Time |
|------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|------|
|                  | In Situ Chemical<br>Oxidation                                                                        | In Situ Chemical<br>Reduction                                             |   |      |
| Common name:     | ISCO                                                                                                 | ISCR                                                                      |   |      |
| What does it do? | Chemical oxidants used<br>to transform CVOCs into<br>less toxic forms.                               | Chemical<br>reductants to<br>transform CVOCs<br>into less toxic<br>forms. |   |      |
| Challenges:      | Oxidant gets used up<br>quickly, multiple<br>injections. Hard to reach<br>places. Even applications. | Hard to reach<br>places. Even<br>application.                             |   |      |


| In Situ          | Injection Events                                                                                     |                                                                           |                                                                                                                        | Time |
|------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|
|                  | In Situ Chemical<br>Oxidation                                                                        | In Situ Chemical<br>Reduction                                             | In Situ Enhanced<br>Reductive<br>Dechlorination                                                                        |      |
| Common name:     | ISCO                                                                                                 | ISCR                                                                      | ISERD                                                                                                                  |      |
| What does it do? | Chemical oxidants used<br>to transform CVOCs into<br>less toxic forms.                               | Chemical<br>reductants to<br>transform CVOCs<br>into less toxic<br>forms. | Enhancing natural<br>anaerobic degradation with<br>carbon food source and<br>chemical reduction agents.<br>ISAB + ISCR |      |
| Challenges:      | Oxidant gets used up<br>quickly, multiple<br>injections. Hard to reach<br>places. Even applications. | Hard to reach<br>places. Even<br>application.                             | Will need a pH buffer to support microbes.                                                                             |      |

| In Situ          | Injection Events              |                               |                                                 | Time                   |
|------------------|-------------------------------|-------------------------------|-------------------------------------------------|------------------------|
|                  | In Situ Chemical<br>Oxidation | In Situ Chemical<br>Reduction | In Situ Enhanced<br>Reductive<br>Dechlorination | In Situ Adsorption     |
| Common name:     | ISCO                          | ISCR                          | ISERD                                           | ISA                    |
| What does it do? | Chemical oxidants used        | Chemical                      | Enhancing natural                               | A binder is introduced |

| What does it do? | Chemical oxidants used<br>to transform CVOCs into<br>less toxic forms.                               | Chemical<br>reductants to<br>transform CVOCs<br>into less toxic<br>forms. | Enhancing natural<br>anaerobic degradation with<br>carbon food source and<br>chemical reduction agents.<br>ISAB + ISCR | A binder is introduced<br>to reduce mobility.<br>Provides a matrix for<br>microorganisms.<br>Colloidal or powered<br>activated carbon. |
|------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Challenges:      | Oxidant gets used up<br>quickly, multiple<br>injections. Hard to reach<br>places. Even applications. | Hard to reach<br>places. Even<br>application.                             | Will need a pH buffer to support microbes.                                                                             | Hard to reach places,<br>soil fracturing could be<br>required.                                                                         |

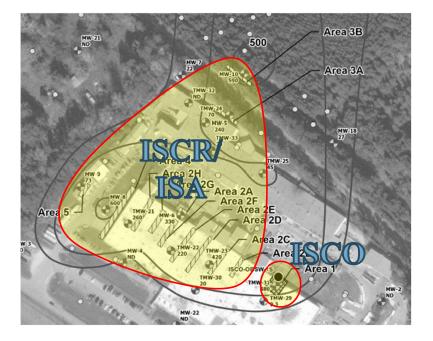
In Situ Chemical Oxidation (ISCO), Monitored Natural Attenuation (MNA), Institutional Controls (IC), and Containment via Cover (CvC)


Cost: \$2,653,000 over a 30-year period.





In Situ Chemical Oxidation (ISCO), In Situ Enhanced Reductive Dechlorination (ISERD), In Situ Adsorption (ISA), Monitored Natural Attenuation (MNA), Institutional Controls (IC), and Containment via Cover (CvC)


Cost: \$3,052,000 over a 30-year period.





In Situ Chemical Oxidation (ISCO), In Situ Chemical Reduction (ISCR), In Situ Adsorption (ISA), Monitored Natural Attenuation (MNA), Institutional Controls (IC), and Containment via Cover (CvC)

Cost: \$2,393,000 over a 30-year period.





# **Evaluation of Alternatives**



### **Threshold Criteria**

Overall protection of human health and the environment.

Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)

• Staying compliant with federal and state environmental statues and regulations. Any permits needed to implement the remedy.

## **Balancing Criteria**

#### Short-term effectiveness

• Risks to on-site workers, the community, or the environment during implementation.

Long-term effectiveness and permanence

• How permanent the remediation is, and what are the long-term risks.

Reduction of toxicity, mobility & volume through treatment

• Does the remedy address the toxicity, mobility, and volume, especially in the source areas.

Implementability

• Is the remedy feasible.

Costs

| Criterion                                            | Alternative 1<br>No Action | Alternative 2<br>MNA, IC & CvC | Alternative 3<br>ISCO,<br>MNA, IC & CvC | Alternative 4<br>ISCO, ISERD, ISA,<br>MNA, IC & CvC | Alternative 5<br>ISCO, ISCR, ISA,<br>MNA, IC & CvC |
|------------------------------------------------------|----------------------------|--------------------------------|-----------------------------------------|-----------------------------------------------------|----------------------------------------------------|
| Protection<br>Human Health<br>and the<br>Environment | 1                          | 3                              | 4                                       | 4                                                   | 4                                                  |
| Compliance<br>with ARARs                             | 1                          | 2                              | 3                                       | 3                                                   | 3                                                  |
| Short-Term<br>Effectiveness                          | 1                          | 2                              | 4                                       | 3                                                   | 5                                                  |
| Long-Term<br>Effectiveness and<br>Permanence         | 1                          | 2                              | 3                                       | 3                                                   | 4                                                  |
| Reduction of<br>toxicity, mobility, &<br>volume      | 2                          | 2                              | 3                                       | 4                                                   | 4                                                  |
| Implementability                                     | 5                          | 4                              | 4                                       | 3                                                   | 4                                                  |
| Costs                                                | \$0                        | \$1,137,000                    | \$2,653,000                             | \$3,052,000                                         | \$2,393,000                                        |
|                                                      | 5                          | 4                              | 3                                       | 3                                                   | 3                                                  |
| Total Score                                          | 16                         | 19                             | 24                                      | 23                                                  | 27                                                 |

# SCDES's Preferred Alternative



- Source Area Treatments: ISCO, ISCR, and ISA.
- MNA, IC, and CvC to follow, along with 5 year reviews.
- Cost: \$2,393,000 over a 30-year period.



## **Community Acceptance**

Comments from the public will be carefully considered by SCDES prior to the final remedy selection.

Public Comments will be included in the Responsiveness Summary of the Record of Decision, along with SCDES's responses.

# **Public Comment Period**



SCDES will accept written comments on the Proposed Plan during the public comment period. Please submit your written comments to:

#### Genevieve Keller-Milliken //

#### **Project Manager**

SCDES, Bureau of Land & Waste Management 2600 Bull Street, Columbia, SC 29201 **genevieve.kellermilliken@des.sc.gov** 803.898.0722 des.sc.gov

### Public Comment Period

March 11, 2025 -

April 14, 2025

www.des.sc.gov/shakespeare





# Get in touch

#### Genevieve Keller-Milliken // Project Manager

SCDES, Bureau of Land & Waste Management

2600 Bull Street, Columbia, SC 29201

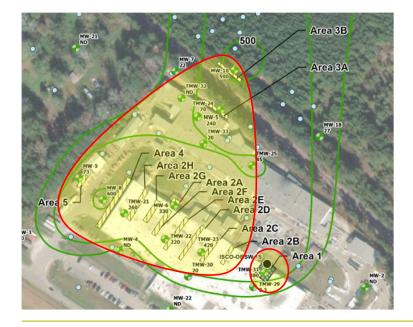
genevieve.kellermilliken@des.sc.gov

803.898.0722

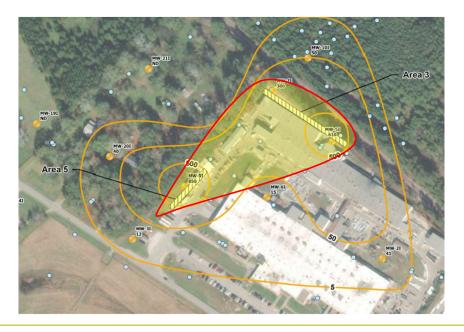
des.sc.gov

Elisa Vincent // Contract Coordinator Lucas Berresford // Section Manager



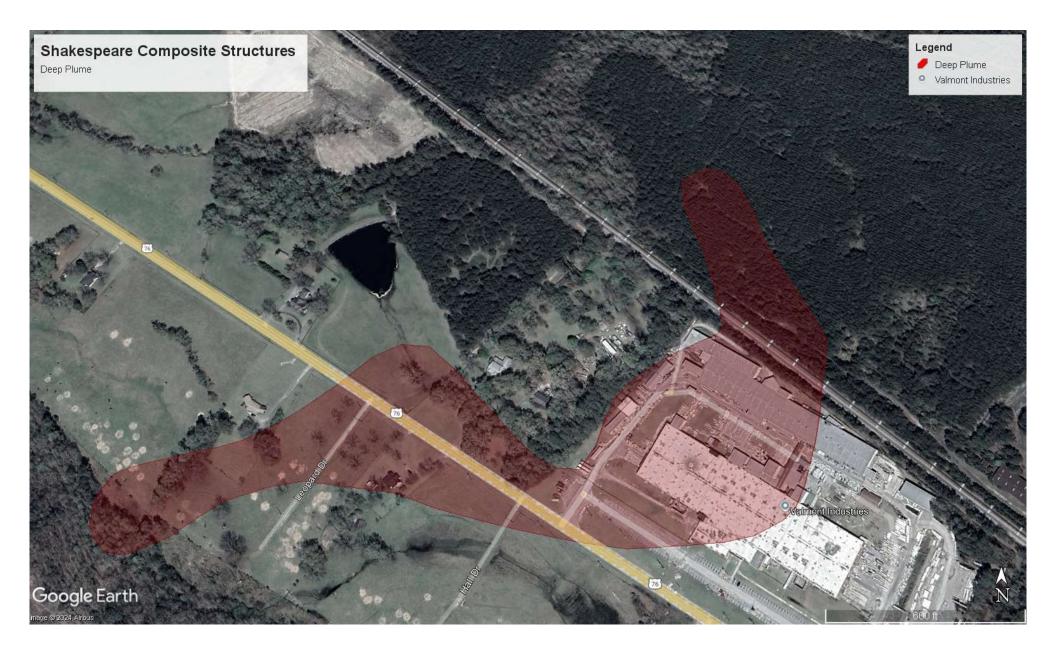

@SouthCarolinaDES

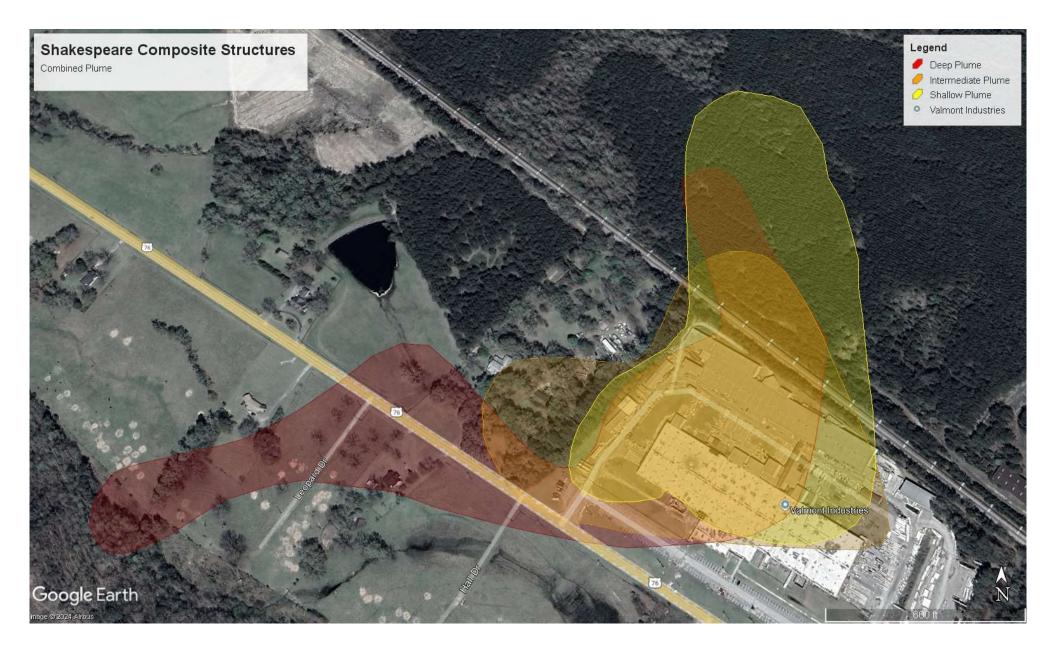



| Criterion                                                         | Alternative 1<br>No Action                                                           | Alternative 2<br>MNA, IC & CvC                                                                        | Alternative 3<br>ISCO, MNA, IC & CvC                                                                                                                                                             | Alternative 4<br>ISCO, ISERD, MNA, IC & CvC                                                                                                                                                                | Alternative 5<br>ISCO, ISCR, MNA, IC & CvC                                                                                                                                                             |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protection<br>Human Health<br>and the Environment                 | Does not protect human<br>health nor the<br>environment.                             | ICs restrict use of land and groundwater. Human health is protected during monitoring efforts.        | Treats source area contamination.<br>Provides protection of human health<br>and the environment throughout the<br>remedial process.                                                              | Treats source area contamination.<br>Provides protection of human health<br>and the environment throughout the<br>remedial process.                                                                        | Treats source area contamination.<br>Provides protection of human health<br>and the environment throughout the<br>remedial process.                                                                    |
|                                                                   | 1                                                                                    | 3                                                                                                     | 4                                                                                                                                                                                                | 4                                                                                                                                                                                                          | 4                                                                                                                                                                                                      |
| Compliance<br>with ARARs                                          | Does not comply with ARARs.                                                          | Complies with ARARs in a<br>longer time frame in areas not<br>under land use controls                 | frame in areas not under land use controls                                                                                                                                                       | Complies with ARARs in a longer time frame in areas not under land use controls                                                                                                                            | Complies with ARARs in a longer time frame in areas not under land use controls                                                                                                                        |
|                                                                   | 1                                                                                    | 2                                                                                                     | 3                                                                                                                                                                                                | 3                                                                                                                                                                                                          | 3                                                                                                                                                                                                      |
| Short-Term<br>Effectiveness                                       | Do not provide short-<br>term effectiveness.                                         | Provides short-term<br>effectiveness with IC, but with<br>no active treatment on source<br>area CVOCs | Provides short-term effectiveness<br>with ISCO, ICs. ISCO works faster<br>than ISERD and ISCR but will require<br>more injections at the overall site.                                           | Provides short-term effectiveness with<br>ISCO, ICs. ISERD works slower than<br>Alternatives 3 and 5.                                                                                                      | Provides short-term effectiveness<br>with ISCO, ICs. ISCR works slower<br>than Alternative 3 but requires<br>significantly fewer injections overall.                                                   |
|                                                                   | 1                                                                                    | 2                                                                                                     | 4                                                                                                                                                                                                | 3                                                                                                                                                                                                          | 5                                                                                                                                                                                                      |
| Long-Term<br>Effectiveness and<br>Permanence                      | Do not provide long term<br>effectiveness                                            | Provides some long-term<br>effectiveness through<br>monitoring and ICs.                               | Provides more long-term<br>effectiveness through active<br>treatment of source zone. More<br>effective than Alternative 4 as a pH<br>buffer is not needed. Treatment by<br>ISCO is irreversible. | Provides more long-term effectiveness<br>through active treatment of source<br>zone. Less effective than Alternatives 3<br>and 5 as a pH buffer is needed.<br>Treatment by ISCO, ISERD is<br>irreversible. | Provides more long-term<br>effectiveness through active<br>treatment of source zone. More<br>effective than Alternative 4 as a pH<br>buffer is not needed. Treatment by<br>ISCO, ISCR is irreversible. |
|                                                                   | 1                                                                                    | 2                                                                                                     | 3                                                                                                                                                                                                | 3                                                                                                                                                                                                          | 4                                                                                                                                                                                                      |
| Reduction of toxicity,<br>mobility, & volume<br>through treatment | Does not actively reduce<br>toxicity, mobility nor<br>volume by active<br>treatment. | Does not actively reduce<br>toxicity, mobility nor volume by<br>active treatment.                     | Reduction in toxicity and volume<br>through ISCO treatment. Does not<br>directly address mobility.                                                                                               | Reduction in toxicity and volume<br>through ISCO, ISERD treatment.<br>Reduction in mobility through<br>adsorption, though saprolite soils may<br>cause some ineffectiveness.                               | Reduction in toxicity and volume<br>through ISCO, ISCR treatment.<br>Reduction in mobility through<br>adsorption, though saprolite soils<br>may cause some ineffectiveness.                            |
|                                                                   | 2                                                                                    | 2                                                                                                     | 3                                                                                                                                                                                                | 4                                                                                                                                                                                                          | 4                                                                                                                                                                                                      |
| Implementability                                                  | No issues to be<br>implemented.                                                      | Resources are readily available.<br>Facility owner appears to be<br>amiable to ICs.                   | Resources are readily available.<br>Facility owner appears to be amiable<br>to ICs. Pilot study shows that the<br>injections are feasible.                                                       | Resources are readily available. Facility<br>owner appears to be amiable to ICs.<br>Pilot study shows that the injections are<br>feasible. pH buffer will need to be<br>introduced into target aquifer.    | Resources are readily available.<br>Facility owner appears to be amiable<br>to ICs. Pilot study shows that the<br>injections are feasible.                                                             |
|                                                                   | 5                                                                                    | 4                                                                                                     | 4                                                                                                                                                                                                | 3                                                                                                                                                                                                          | 4                                                                                                                                                                                                      |
| Costs                                                             | \$0                                                                                  | \$1,137,000                                                                                           | \$2,653,000                                                                                                                                                                                      | \$3,052,000                                                                                                                                                                                                | \$2,393,000                                                                                                                                                                                            |
|                                                                   | 5                                                                                    | 4                                                                                                     | 3                                                                                                                                                                                                | 3                                                                                                                                                                                                          | 3                                                                                                                                                                                                      |
| Total Score                                                       | 16                                                                                   | 19                                                                                                    | 24                                                                                                                                                                                               | 23                                                                                                                                                                                                         | 27                                                                                                                                                                                                     |

### **Targeted Treatment Areas**

### Shallow Zone





### Intermediate Zone









