

Introduction to Water Management Strategies

John Boyer

Planning Framework Definitions

- Surface Water Management Strategy a water management strategy proposed to eliminate a Surface Water Shortage, reduce a Surface Water Shortage, or generally increase Surface Water.
- Groundwater Management Strategy a water management strategy proposed to address a Groundwater Area of Concern or Groundwater Shortage.
- Groundwater Area of Concern an area in the Coastal Plain, designated by an RBC, where groundwater withdrawals from a specified aquifer are causing or are expected to cause unacceptable impacts to the resource or to the public health and well-being.

Demand Side Strategies

Example Practices

Municipal conservation

Ag/Irrigation conservation

Water loss control programs

Low flow fixtures, toilets and appliances

Pricing structures (ex. increasing block rates)

Recycled water programs

Public education

Water audits and center pivot sprinkler retrofits

Cover cropping, conservation tillage, mulch

Soil Moisture sensors/smart irrigation

Crop selection

Irrigation scheduling

Drip/Trickle irrigation (for select crops)

Demand Side Strategies

Example Practices

Industrial conservation

Thermoelectric conservation

Water reuse and recycling

Water efficient processes

Water loss control

Low flow fixtures, toilets and appliances

Water reuse and recycling

Switch to combined-cycle natural gas

Energy saving appliances (which reduces thermoelectric generation needs)

Supply Side Strategies

Example Practices

New or Increased Storage

Water Reclamation

Conjunctive Use

New impoundments, ponds, reservoirs, tanks

Dredging (pond deepening)

Reservoir expansion (raising dam height)

Aquifer storage and recovery (ASR)

Water reuse systems (non-potable)

Direct potable reuse

Stormwater capture and treatment

Using groundwater to augment surface water during low flow periods

Supply Side Strategies

Example Practices

Conveyance

Regional water systems
Utility interconnections
Interbasin transfers

Water Management Strategies Examples from SC, NC and GA

Water Conservation Strategies

Town of Cary, NC (pop. 175,000)

- Since 1999, the Town has implemented:
 - Three-tiered water rate structure
 - Landscape and irrigation codes
 - Toilet flapper rebates
 - Residential water audits
 - Points program for new construction with water efficient measures
 - Monthly water budgets for large irrigators
 - Public education
 - Reclaimed water program
- Conservation strategies have helped reduce per capita water demand from 114 gpcd in 2001 to 81 gpcd in 2016 (a 29% reduction in per capita demand)

Water Conservation Strategies

Metro North Georgia Water Planning District

Example Water Conservation & Efficiency measures implemented:

- Conservation pricing structures
- Toilet rebate program
- Landscape irrigation program
- Leak detection and water loss control programs
- Car wash recycling ordinances
- Public education

Conservation strategies have helped reduce per capita water demand from 131 gpcd in 2003 to 99 gpcd in 2018 (a 24% reduction in per capita demand)

Annual Per Capita Water Use

Sources: Metropolitan North Georgia Water Resource Management Plan, June 2017 and https://northgeorgiawater.org/current-water-stats/water-withdrawals-per-capita-remain-steady/

Greenville Water – Declining per Capita Demand

2001: 95 gpcd

2021: 68 gpcd

A 28% decrease in residential per capita demand

Water Efficiency and Water Loss Programs

How many gallons of drinking water are estimated to be lost each year in the U.S. to faulty, aging, and leaking pipes?

- A. 1.7 Billion gallons
- B. 17 Billion gallons
- C. 170 Billion gallons
- D. 1.7 Trillion gallons

Water Efficiency and Water Loss Programs

Georgia Water Stewardship Act of 2010

- The Act set water loss control requirements that include:
 - Completion of an Annual Water Loss Audit using AWWA M36 Methodology
 - Development and implementation of a Water Loss Control Program
 - Development of individual goals to set measures of water supply efficiency
 - Demonstration of progress toward improving water supply efficiency
- Requirements apply to public water systems serving populations over 3,300 (about 250 utilities)

Water Efficiency and Water Loss Programs

Histogram of Real Losses as a Percent of Total Water Supplied 10 Year Average for 263 Georgia Utilities

Catawba-Wateree Water Management Group (CWWMG)

Multi-phased Approach to Water Loss

ľ

Annual M36 water audit

Annual

Water

Balance

Apparent & Real Loss volumes

Level 1 validation

baseline

Stage 1

Loss Profiling & Uncertainty

Advanced Validation

- Level 2 Analytics
- Level 3 Field Study
- Margins of Error

Apparent Loss Profile

- Theft
- Meter Inaccuracy
- Data Handling

Real Loss Profile

- •Reported Leakage
- Unreported Leakage
- Background Leakage

technical analysis

Stage 2

& Targets

Cost-Benefit

Costs of losses

- by subcomponent
- · in aggregate
- · wholesale & retail

Costs of intervention strategies

Program design

System-specific

economic analysis

Stage 3

Leakage Management:

Intervention

- Active Leak Detection
- · Pressure Optimization
- · Repair Time Reduction
- Network Renewal

Revenue Protection:

- · Theft Mitigation
- Meter Optimization & Renewal
- Billing Data System Integrity
- · Revenue Recovery

cost-effectiveness

3 Stage 4

Phases 1 - 4 2014 - 2017

Phase 5 2018 - 2020 Phase 6 2021-22

Phases 7+ 2023+

CWWMG Water Loss Program PHASE 6

Estimated Water Loss Volume (2021): 17 BG

Estimated Water Loss Cost (2021): \$23M

Existing Water Management Strategies in the Edisto Basin

City of Orangeburg

- Two Aquifer Storage and Recover (ASR) wells
- Interconnection with Lake Marion Regional Water System

Existing Water Management Strategies in the Edisto Basin

Walther Farms

- Supply side Installed groundwater well to provide up to 20% of peak demand (conjunctive use)
- **Demand side** Water audit/sprinkler head retrofits, eliminate end spray guns, cover cropping, dammer dikers

Existing Water Management Strategies in the Edisto Basin

Dominion Energy Cope Station Conjunctive Use of Surface and Groundwater

 Moving from 100% groundwater to a combination of surface and groundwater by 2028

- Eventually will withdrawal ~90% from surface water and ~10% from groundwater when river conditions allow
- During low flow conditions, all water use at the station will be groundwater

Existing Water Management Strategies in the Lower Savannah and Salkehatchie Basins

Coosaw Farms

- **Supply side** conjunctive use of groundwater and surface water, capture excess runoff, filter stations for reuse of water
- **Demand side** Moisture sensors for using water efficiently, micro emitters to apply water where it's needed.

Filter Stations for Water Reuse

Soil Moisture Sensors

Capture Excess Runoff

Micro Emitters

