

Draft Upper Savannah River Basin Plan Public Meeting

April 21, 2025

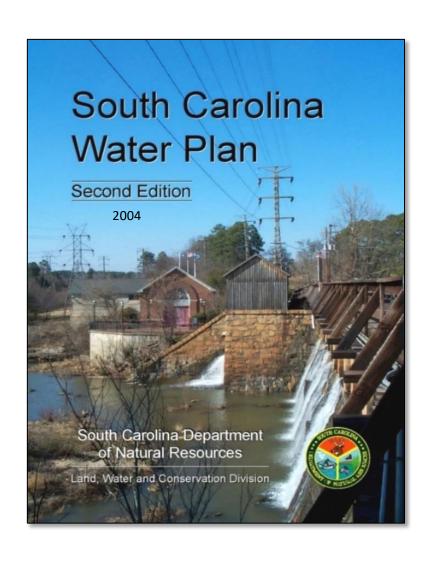
Draft Upper Savannah River Basin Plan – Public Meeting Agenda

Submitting Comments of the Draft Plan	7:55 – 8:00
 Public Comments and Q&A with the RBC 	7:25 – 7:55
 Draft Upper Savannah River Basin Plan Highlights 	6:20 - 7:20
Overview of the Planning Process	6:10 - 6:20
Welcome and Introductions	6:00 - 6:10

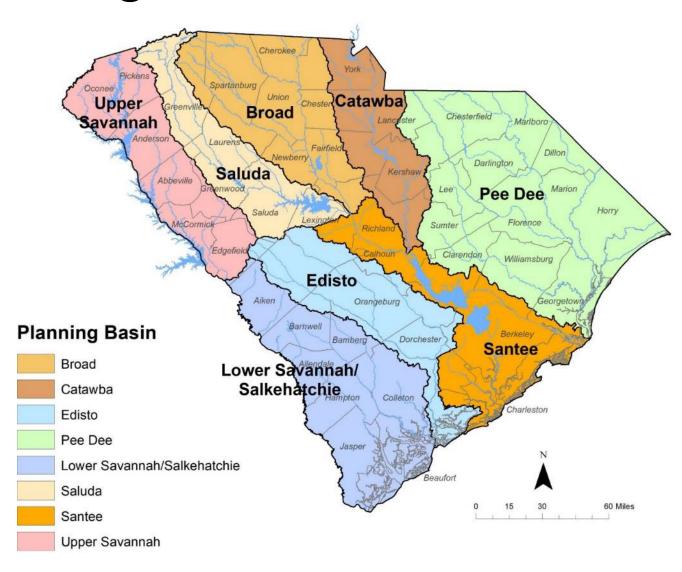
Welcome and Introductions

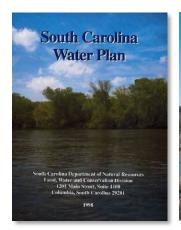
Upper Savannah River Basin Council

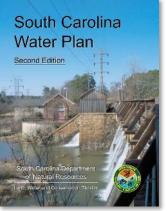
Name	Organization	Interest Category	
Mack Beaty, IV	Beaty Farms	Agriculture Forestry and Irrigation	
Daniel Milam	Milam Farms	Agriculture, Forestry, and Irrigation	
Jill Miller	SC Rural Water Association		
Dan Murph	Murph Investments, LLC	At-Large	
Harold Shelley	Friends of the Savannah River Basin	Al-Luige	
Tonya Winbush	Veterans of Foreign Wars/Adopt-A-Stream		
Alan Stuart	Duke Energy	Electric Power Utilities	
Tonya Bonitatibus	Savannah Riverkeeper	For the man embed between the cond	
John Hains	Friends of Lake Keowee Society	Environmental Interests and Conservation Groups	
Katie Hottel	Upstate Forever		
Cole Rogers	Delux Construction, Inc.		
Mark Warner	McCormick and Abbeville Co. Economic Development	Industry and Economic Development	
Will Williams	Western SC Economic Development Partnership		
Jon Batson	Anderson County	Local Governments	
Reagan Osbon	City of Westminster	Local Governments	
Cheryl Daniels	McCormick Commission of Public Works (CPW)		
Jeff Phillips	Greenville Water	Water and Sewer Utilities	
Melisa Ramey	Seneca Light and Water	water and sewer offinites	
Scott Willett	Anderson Regional Joint Water System (ARJWS)		
Billy Owens	Lake Hartwell Sail and Power Squadron	Water-Based Recreational	



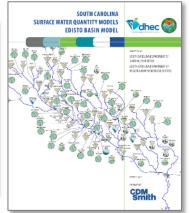
Overview of the Planning Process


History of State Water Planning

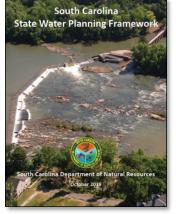

- Prior to July 1, 2024, state water planning was the responsibility of SCDNR:
 - SCDNR published the first edition of the State Water Plan in 1998.
 - In 2004, SCDNR published the second edition of the South Carolina Water Plan incorporating lessons learned from the drought of 1998-2002.
 - One recommendation was to develop a regional water plan for each major river basin in the State.
 - In 2014, SCDNR initiated the first steps to developing regional water plans, now formerly called River Basin Plans.
- Pursuant to Act 60 of 2023 and effective July 1, 2024, water planning responsibilities were transferred to SCDES.


South Carolina's Eight Planning Basins

- River Basin Plans will be developed for the State's eight major river basins using a "bottom-up" approach where stakeholders in each basin lead the development of their basin plan.
- Collectively, the River Basin Plans will form the foundation of a new State Water Plan.



South Carolina State Water Planning Timeline



1998 First State Water Plan

2004 Water Plan Second Ed.

2014 **SCDNR** begins process to develop regional water plans

2017

Surface water models (SWAM) completed for all eight basins

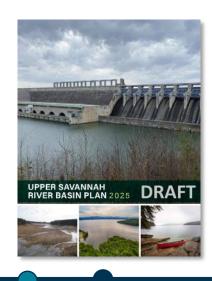
March 2018

Formation of the Planning Process Advisory Committee (PPAC) Oct 2019

State Water Planning Framework published

June 2020

First RBC is formed and begins the Planning Process


Other Supporting **Activities** Surface and Groundwater TACs Formed and Meet

Coastal Plain Groundwater Model Updated

Water Demand Methodology Developed

South Carolina State Water Planning Timeline

July 2023

Upper Savannah RBC

Convenes

September 2024

Gov. McMaster signs
Executive Order

October 2024

First Meeting of WaterSC

January 2025

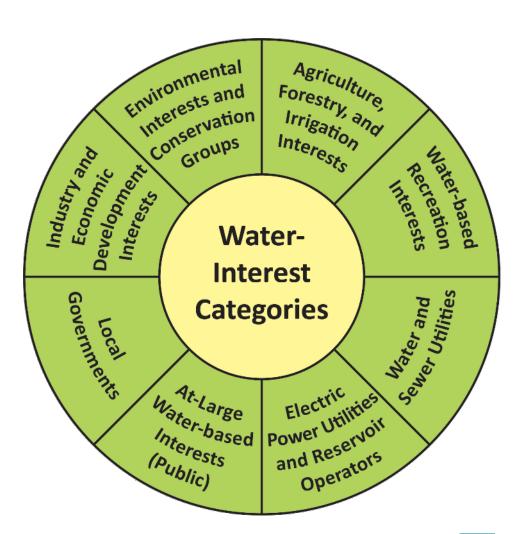
Surface Water
Study Legislative
Committee
Meets

January and April
WaterSC Listening Sessions

April 2025

Draft Upper Savannah River Basin Plan

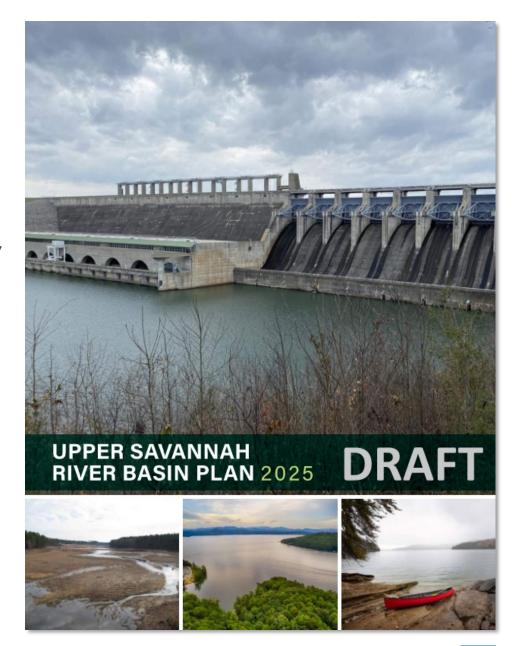
Planning Process Advisory Committee


- Convened by SCDNR in March 2018.
- Purpose develop a guidance document (Planning Framework) for developing River Basin Plans and for updating the State Water Plan.
- South Carolina State Water Planning Framework (Planning Framework) was published in October 2019 after an 18month process.
- New WaterSC committee has recently replaced the PPAC.

Planning Framework is available for review and download at:

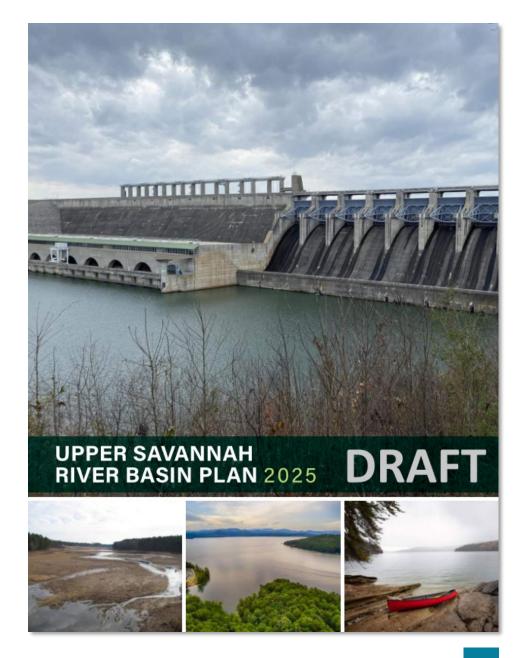
Planning Framework calls for the formation of a River Basin Council (RBC) in each planning basin

- Stakeholder-led team responsible for developing the River Basin Plan
- Up to 25 members representing 8 interest categories
- Governed by a set of Bylaws
- Consensus based decision-making process
- Chair and Vice-Chair elected by RBC


What is a River Basin Plan?

Key Outcomes

- Assesses current water supply and demand
- Identifies future water demand scenarios
- Identifies water management strategies to ensure supply meets or exceeds demand over the Planning Horizon


Features

- Stakeholder-developed
- Covers a 50-year Planning Horizon.
- Considers both surface water and groundwater
- Supported by hydrologic data, models, and waterdemand projections.

The current focus of River Basin Plans is on water quantity, with emphasis on drought conditions.

Subsequent phases of planning evaluate water quality issues that are important in each river basin.

The Four Phases of the Planning Process

Phase 1

Understand Baseline

- Develop a vision statement and goals
- Learn about the basin's water resources and modeling tools
- Evaluate water demand projections

Phase 2

Assess Future Availability

- Evaluate current and future water availability issues
- Identify and quantify potential water shortages through year 2070 for several water demand scenarios

Phase 3

Develop Strategies

- Develop and evaluate water management strategies
- Recommend and prioritize strategies

Phase 4

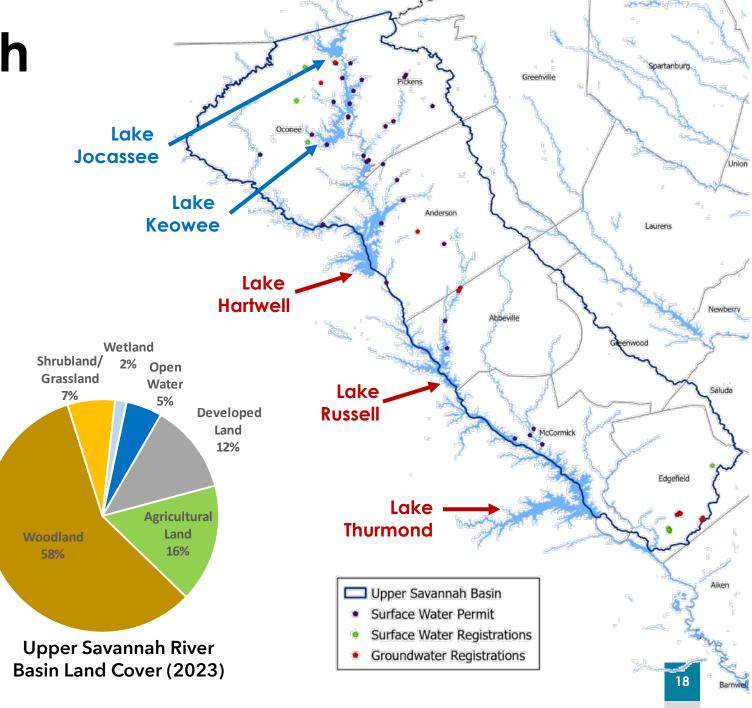
Develop the Plan

- Develop legislative, policy, technical and planning process recommendations
- Prepare the River Basin Plan that includes an implementation plan, Identifies drought response initiatives, and considers public input

River Basin Planning Current Status

Basin	Status	Completion Date	
Edisto	Completed	June 2023	
Broad	Completed	February 2024	
Pee Dee	Completed	March 2025	
Saluda	March 2023 – present	July 2025	
Upper Savannah	July 2023 – present	May 2025	
Lower Savannah/ Salkehatchie	November 2023 – present	August 2025	
Catawba	CWWMG's Integrated Resource Plan 2020 – present	2025	
Santee	December 2024 – present	Fall, 2025	
State Water Plan	October 2024 – present	December 2025	

Stakeholder Participation



Draft Upper Savannah River Basin Plan Highlights

The Upper Savannah River Basin

- Covers 3,200 square miles in SC (10% of SC area)
- Includes major reservoirs managed by Duke Energy and the US Army Corps of Engineers
- Includes portions of 8 SC counties
- An important source of water for energy production and public water supply

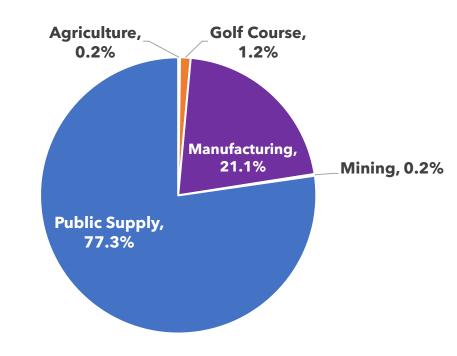
Draft Upper Savannah River Basin Plan Highlights

We Will Review:

- Current and projected water demands in the basin
- Results of current and future water availability assessment
- Extended drought scenario analysis
- Streamflow ecology relationships
- Recommended water management strategies
- Plan recommendations and implementation approach

Upper Savannah RBC Vision Statement

A resilient Upper Savannah River Basin that collaboratively, sustainably, and equitably manages and balances human and ecological needs.



Upper Savannah RBC Goals

2. Develop & implement 1. Develop water use 3. Enhance strategies, policies, & an education & collaboration **legislative** communication plan between all recommendations for to promote the stakeholders and the Upper Savannah strategies, policies, & water interest River Basin to ensure recommendations groups developed in the RBC water resources are plan maintained & resilient & responsible land use.

Current Water Demands in the Basin

Water Use Category	Groundwater (MGD)	Surface Water (MGD)	Total (MGD)
Thermoelectric	0.0	2,848.5	2,848.5
Public Supply	0.09	59.3	59.3
Manufacturing	0.0	8.0	8.0
Golf Course	0.2	0.8	1.1
Agriculture	0.08	0.2	0.3
Mining	0.0	0.3	0.3
Total	0.4	2,917.0	2,917.4

This chart does not include thermoelectric water use, which is most non-consumptive and returned to surface water.

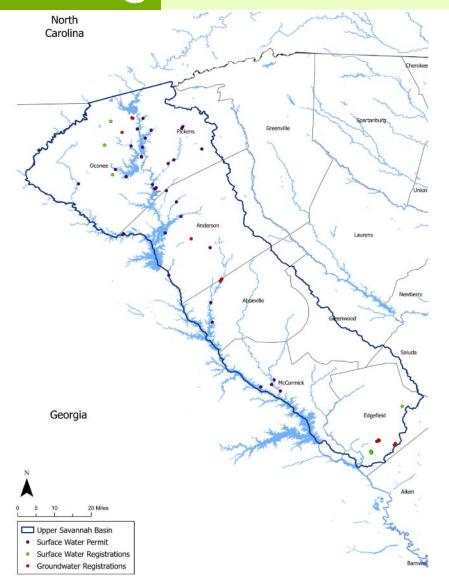
MGD is million gallons per day

Current Water Demands in the Basin

Water Use Category	Total (MGD)
Thermoelectric ¹	2,848.5
Public Supply	59.3
Manufacturing	8.0
Golf Course	1.1
Agriculture	0.3
Mining	0.3
Total	2,917.4

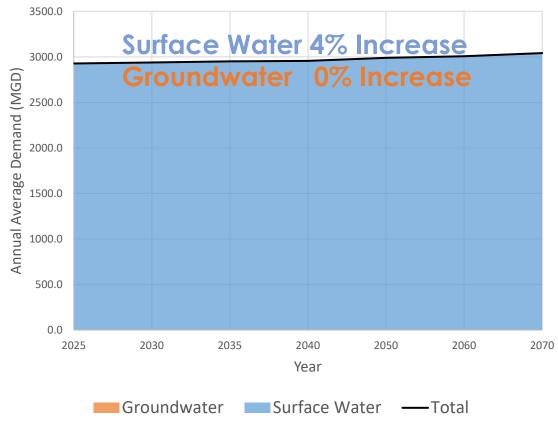
Scale Example 1:

An Olympic-sized swimming pool holds 0.66 million gallons. **Public Supply demand** in the basin would fill 90 pools in one day


Scale Example 2:

If the average flow rate of a garden hose is 15 gallons per minute, **agricultural demand** of 0.3 MGD is approximately the flow rate of 14 garden hoses in one day.

84 Percent of the Permitted and Registered surface water is currently being used in the basin


	Surface Water (MGD)
Currently Used	2,917
Permitted and Registered Amount	3,491
Percent of Total Permitted and Registered Amount Currently in Use	84%

Future Water Demand Scenarios for the Basin

High Demand Scenario demands increase 114 MGD from 2025 to 2070

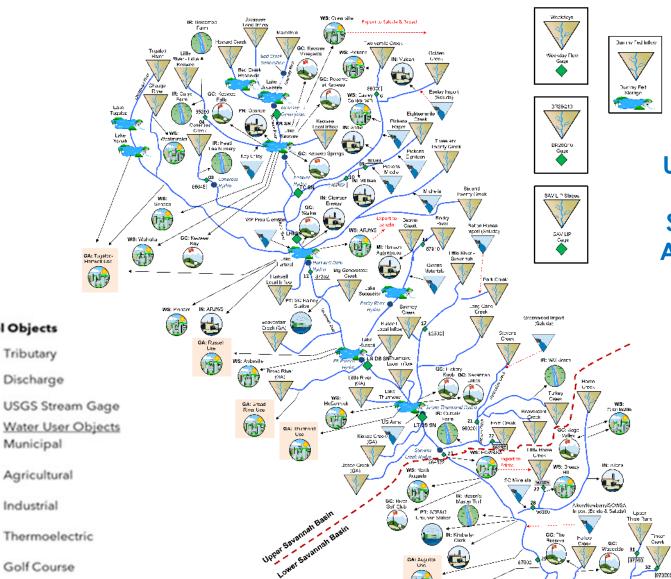
2070 surface water demands for this scenario are 87% of Permitted and Registered amounts

Note: Groundwater demands, projected at a constant average annual demand of 0.4 MGD are too small to be seen on this chart.

Current and Future Water Availability Assessment

A surface water model was used to compare available supply to current and projected water demands

Model Objects


Tributary Discharge

Municipal

Agricultural

Golf Course

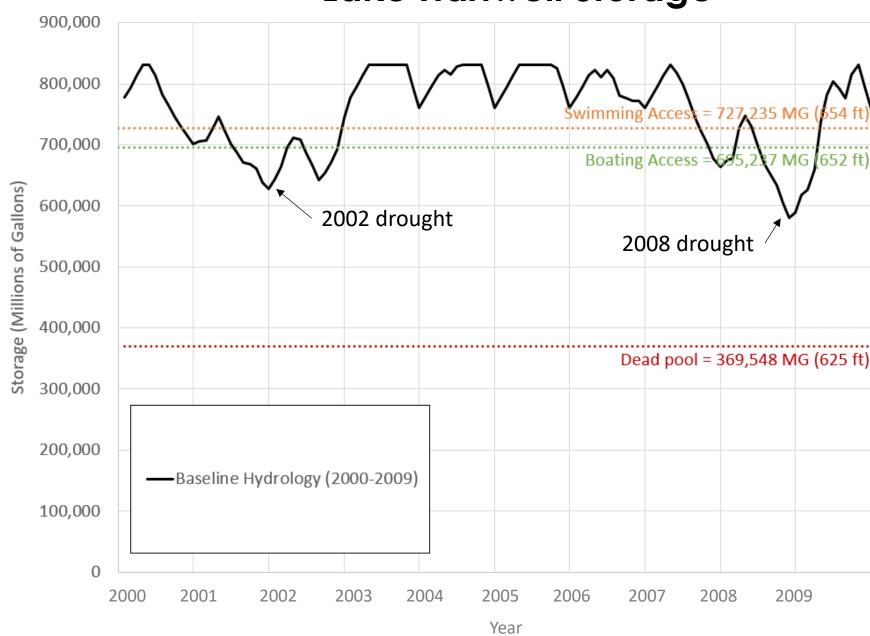
Industrial

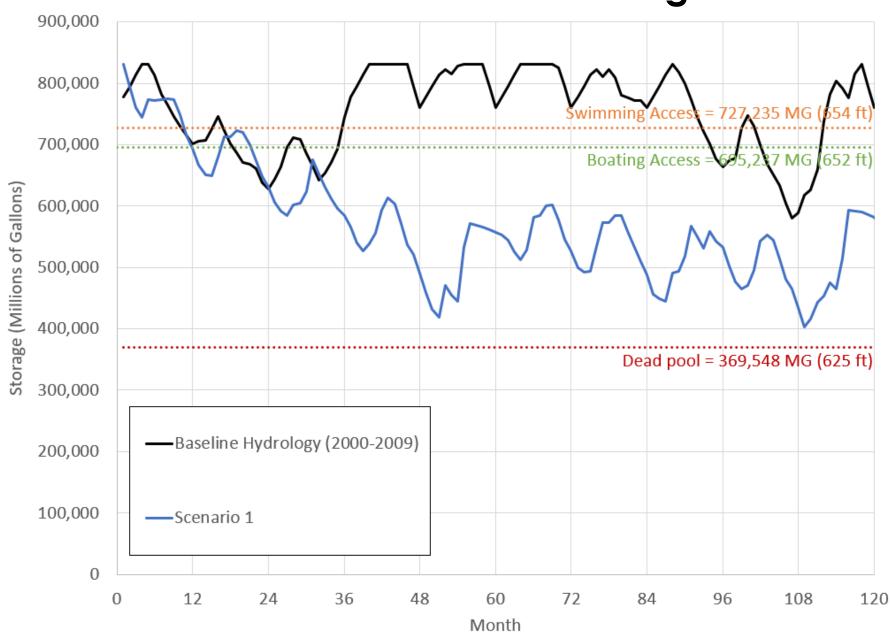
Upper Savannah River Basin **Simplified Water Allocation Model** (SWAM)

Surface Water Key Findings

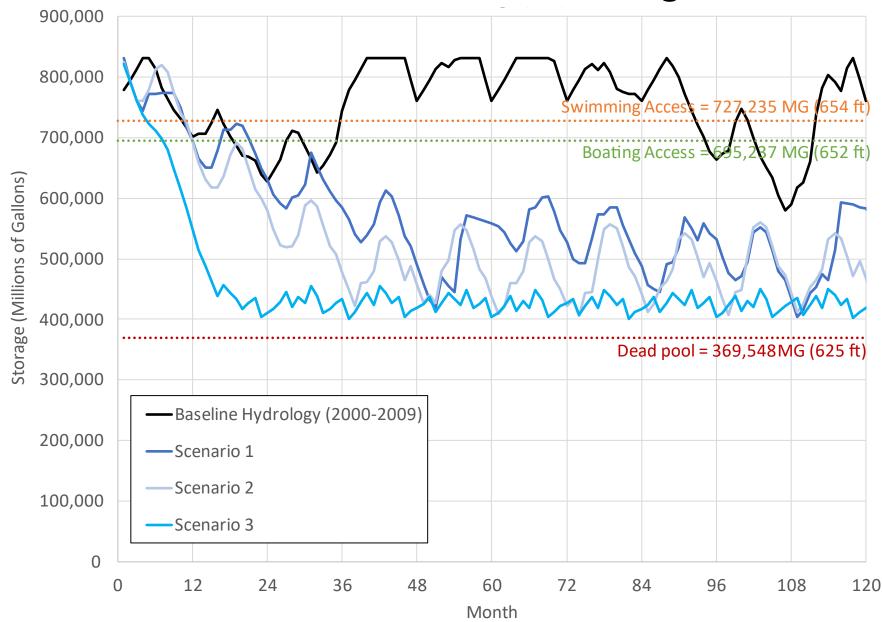
- Surface water resources of the Upper Savannah River basin are generally sufficient to meet current needs.
- Modeling suggests very low probability of shortages under moderate or high economic growth assumptions through 2070.
- Mean and median flows on the Savannah River above Augusta Canal are predicted to decrease by approximately 2 to 5 percent, based on 2070 demands under the High Demand Scenario.
- If all surface water users withdrew at their permitted or registered amount, there would not be enough water for all users.

Extended Drought Scenario Analysis

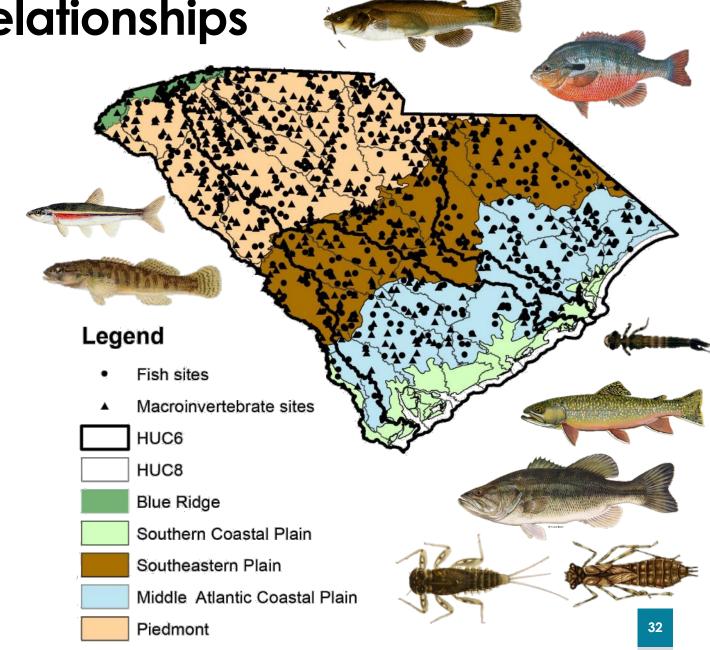

- **Objective:** Given the uncertainty about future climate conditions and to further evaluate water supply resiliency in the basin, the water quantity model was used to test additional, hypothetical hydrologic conditions using the 2070 High Demand Scenario water demands.
- Three extended drought scenarios tested:
 - **Scenario 1:** A repeating 5-year drought constructed by splicing together the five driest water years on record
 - Scenario 2: A repeating single-year drought corresponding to the second driest water year on record
 - **Scenario 3:** A repeating synthetic drought year constructed by splicing together the 12 driest calendar months on record


Lake Hartwell Storage

Extended Drought Scenario Analysis


Lake Hartwell Storage

Extended Drought Scenario Analysis


Extended Drought Scenario Analysis

Lake Hartwell Storage

Streamflow-Ecology Relationships

Objective: Identify relationships between river flow and aquatic habitat suitability to better inform water flow standards throughout the state and serve as a tool supporting informed decision making in the river basin planning process.

Streamflow-Ecology Relationships

In areas where there was sufficient data to perform the analysis, model—simulated flow metrics for all scenarios result in **low risk for ecological integrity***.

This includes "wadable" stream locations on **Twelvemile Creek**, **Eighteenmile Creek**, and **Stevens Creek**, where data was available to support the analysis.

^{*} The analysis did not consider potential negative impacts that that increased development could have on flow regimes and the ecological integrity of streams and rivers in the basin.

Surface Water Management Strategies

Portfolio of Demand Side Strategies

Municipal Strategies (Examples)

- Update, and implementation of drought management plans
- Public education about water conservation
- Conservation pricing structures
- Leak detection and water loss control programs
- Reclaimed water programs
- Residential water audits
- Landscape irrigation program and codes
- Water efficiency standards for new construction
- Time-of-day watering limits

Agricultural Strategies (Examples)

- Water audits and nozzle retrofits
- Irrigation scheduling
- Soil management
- Crop variety, type, and conversion
- Irrigation equipment changes
- Future Technologies

Some of these strategies are already in practice throughout the basin.

Upper Savannah RBC Recommendations

Example Technical and Program Recommendations

The state should request for and cost-share in the completion of **Phase 2 of the USACE Comprehensive Study and Drought Plan Update.**

While the RBC should maintain its focus on the assessment of water quantity, future planning efforts should include evaluation of surface water quality, including bacteria, nutrient loading, and sedimentation.

The impacts of changing land use on streamflow characteristics including the magnitude of flows, timing of flows, and flashiness should be further evaluated, as this may impact water supply availability.

Upper Savannah RBC Recommendations

Example Technical and Program Recommendations

The RBC encourages local governments and land managers to act to reduce sediment loading to reservoirs. This may include:

- Studies to better identify sources of sediment load to reservoirs.
- Incentivizing the establishment of riparian buffers, streambank restoration, and other practices that reduce sediment load to streams and reservoirs.
- Develop and incentivize green infrastructure/stormwater ordinances.
- Strengthen penalties for non-compliance of stormwater ordinances.
- Advocating for the development of local ordinances such as riparian buffers and tree ordinances for new development.

Upper Savannah RBC Recommendations

Example Policy, Legislative, and Regulatory Recommendations

The South Carolina Surface Water Withdrawal, Permitting, Use, and Reporting Act should allow for reasonable use criteria to be applied to all new surface water withdrawals, like those that currently exist for groundwater withdrawals.

Increase coordination and planning with GAEPD on Savannah River water resources issues.

A grant program should be established to help support the implementation of the actions and strategies identified in each RBC's River Basin Plan

The South Carolina Legislature should authorize recurring funding for state water planning activities, including river basin planning.

Implementation Plan

The RBC-developed implementation plan includes specific short-term (5-year) and long-term strategies and actions to address the following five objectives:

- 1. Improve water use efficiency to conserve water resources
- 2. Communicate, coordinate, and promote findings and recommendations from the River Basin Plan
- 3. Improve technical understanding of water resource management issues
- 4. Protect water resources
- 5. Improve drought management
- 6. Promote engagement in water planning process

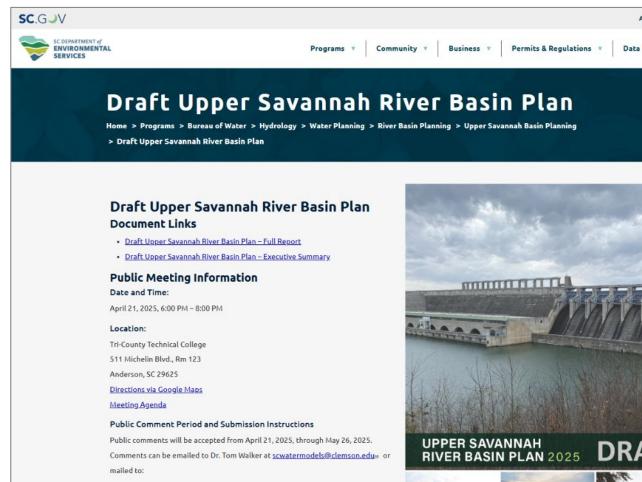
Call to Action

Implementation of the identified strategies and actions requires support from all who have a vested interest in water resources, including:

- Water Users Public Water Suppliers, Power Companies, Industry, Agriculture, Golf Courses, Fishing and Recreational Users, and You!
- State and Federal Agencies SCDES, SCDNR, USGS, SCOR, USACE, GAEPD, etc.
- Conservation Groups The Natura Conservancy, Upstate Forever, and others.

Submitting Comments on the Draft River Basin Plan

The Draft Upper Savannah River Basin Plan, Executive Summary, and a 2-Page Summary Sheet are available at the SCDES Water Planning web page



Comments can be e-mailed to Dr. Tom Walker at:

scwatermodels@clemson.edu

Or mailed to: SC Water Resources Center Office 105-E 509 Westinghouse Road Pendleton, SC 29670 Attn: Dr. Tom Walker

Comments must be received by: May 26th, 2025

Public Comments and Q&A with the RBC

Extra Slides (Not Used)

Extended Drought Scenario Analysis

Performance Measure	Baseline Hydrology (2000- 2009)	Scenario 1	Scenario 2	Scenario 3
GA-Side and SC-Side Water Users				
Total basin annual mean shortage (MGD)	0.12	2.4	37.5	68.8
Percentage of water users experiencing shortage (%)	7.5%	20.0%	32.5%	32.5%
Average frequency of shortage (%)	0.4%	3.3%	21.8%	29.2%

Results show water user shortages, as compared to baseline hydrology, for the constructed extended drought scenarios

In general, the simulations performed highlight significant water supply vulnerabilities if historical observed drought conditions were to occur in the future with greater frequency and/or duration.

Example Implementation Strategy