Natural Infiltration

Description

Natural infiltration is a method in which an undisturbed land area covered with natural vegetation accepts runoff from new development and infiltrates the runoff into the soil.

When and Where to Use It

Use natural infiltration areas only where the soils are suitable. The area is typically in a forested condition with the land surface covered by leaves, pine needles, and other forest floor organic materials. Natural infiltration areas are designated for passive recreation only.

Design Criteria

Use a natural infiltration area as a storm water quality control if it meets the design criteria of this section. The size of a natural infiltration area is calculated using the following equation:

$$A = \frac{(K T I)}{[(cd) - K]}$$

Where:

A = Natural infiltration area required (acres)

K = Runoff volume to infiltrate (inches)

T = Total site area or total drainage area (acres)
I = Built upon area ratio (Built upon area / T)

c = Effective water capacity (in/in), should be determined from site-specific soil samples.

d = Depth of soil A horizon (inches), should be determined from site-specific soil samples.

Runoff enters the infiltration area as sheet flow with a non-erosive velocity. Stabilize and vegetate the areas draining to the Natural Infiltration area a minimum of 20-feet in length.

Natural infiltration areas have the following characteristics:

- Appropriate soils that have a minimum infiltration rate of 0.3-inches per hour, low erosion potential, and good drainage (not in a wetland or floodplain).
- Mature forest cover (if the natural infiltration area (A) is not located in a mature forest, then double the area of that calculated by the equation above).
- Slopes less than 10 percent.
- Remains permanently undisturbed.

The limitations of natural infiltration areas include:

- Not suitable for soils that have greater than 30 percent clay content or greater than 40 percent clay and silt content.
- Not suitable in areas with high water tables or shallow depth to highly impervious strata such as bedrock or clay layers.
- High sediment loadings or lack of maintenance clogs the surface layer therefore inhibiting any water infiltration into the soil.